論文の概要: Lidar Panoptic Segmentation and Tracking without Bells and Whistles
- arxiv url: http://arxiv.org/abs/2310.12464v1
- Date: Thu, 19 Oct 2023 04:44:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-20 16:57:07.177084
- Title: Lidar Panoptic Segmentation and Tracking without Bells and Whistles
- Title(参考訳): lidarのパンオプティカルセグメンテーションとベルやホイッスルのないトラッキング
- Authors: Abhinav Agarwalla, Xuhua Huang, Jason Ziglar, Francesco Ferroni, Laura
Leal-Taix\'e, James Hays, Aljo\v{s}a O\v{s}ep, Deva Ramanan
- Abstract要約: ライダーセグメンテーションと追跡のための検出中心ネットワークを提案する。
私たちのネットワークのコアコンポーネントの1つは、オブジェクトインスタンス検出ブランチです。
提案手法を複数の3D/4D LPSベンチマークで評価し,我々のモデルがオープンソースモデル間で新たな最先端性を確立することを確認した。
- 参考スコア(独自算出の注目度): 48.078270195629415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State-of-the-art lidar panoptic segmentation (LPS) methods follow bottom-up
segmentation-centric fashion wherein they build upon semantic segmentation
networks by utilizing clustering to obtain object instances. In this paper, we
re-think this approach and propose a surprisingly simple yet effective
detection-centric network for both LPS and tracking. Our network is modular by
design and optimized for all aspects of both the panoptic segmentation and
tracking task. One of the core components of our network is the object instance
detection branch, which we train using point-level (modal) annotations, as
available in segmentation-centric datasets. In the absence of amodal (cuboid)
annotations, we regress modal centroids and object extent using
trajectory-level supervision that provides information about object size, which
cannot be inferred from single scans due to occlusions and the sparse nature of
the lidar data. We obtain fine-grained instance segments by learning to
associate lidar points with detected centroids. We evaluate our method on
several 3D/4D LPS benchmarks and observe that our model establishes a new
state-of-the-art among open-sourced models, outperforming recent query-based
models.
- Abstract(参考訳): State-of-the-art lidar panoptic segmentation (LPS)法はボトムアップセグメンテーション中心の手法に従っており、クラスタリングを利用してオブジェクトインスタンスを得る。
本稿では,この手法を再考し,LPSとトラッキングの両方のための驚くほどシンプルで効果的な検出中心ネットワークを提案する。
私たちのネットワークは設計上モジュラーであり、panopticのセグメンテーションとトラッキングタスクの両方に最適化されています。
セグメンテーション中心のデータセットで利用可能なポイントレベル(モダル)アノテーションを使ってトレーニングします。
アモーダル(立方体)アノテーションが欠如している場合には、オクルージョンやライダーデータのスパースな性質により単一のスキャンから推測できない物体サイズに関する情報を提供する軌跡レベルの監視を用いて、モダルセントロイドと対象範囲を回帰する。
我々は,lidar点と検出されたセンタロイドを関連付ける学習により,細粒度のインスタンスセグメントを得る。
提案手法を複数の3D/4D LPSベンチマークで評価し,最近のクエリベースモデルよりも優れたオープンソースのモデルの間に新たな最先端性を確立することを確認する。
関連論文リスト
- SeMoLi: What Moves Together Belongs Together [51.72754014130369]
動作手がかりに基づく半教師付き物体検出に挑戦する。
近年,移動物体の擬似ラベルインスタンスに対して,動きに基づくクラスタリング手法が適用可能であることが示唆された。
我々は、このアプローチを再考し、オブジェクト検出とモーションインスパイアされた擬似ラベルの両方が、データ駆動方式で取り組めることを示唆する。
論文 参考訳(メタデータ) (2024-02-29T18:54:53Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
本稿では,ビデオストリームの時間的一貫性を利用して,不正確なフローベース提案を補正する外観に基づく改善手法を提案する。
提案手法では,高精度なフロー予測マスクを模範として,シーケンスレベルの選択機構を用いる。
パフォーマンスは、DAVIS、YouTube、SegTrackv2、FBMS-59など、複数のビデオセグメンテーションベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-12-18T18:59:51Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Segment Anything Meets Point Tracking [116.44931239508578]
本稿では,SAMと長期点追跡を併用した,ポイント中心の対話型ビデオセグメンテーションの新たな手法を提案する。
ゼロショットオープンワールドUnidentified Video Objects(UVO)ベンチマークで直接評価することで,ポイントベーストラッキングのメリットを強調した。
DAVIS, YouTube-VOS, BDD100Kなどの人気ビデオオブジェクトのセグメンテーションと多目的セグメンテーションのベンチマーク実験により, ポイントベースセグメンテーショントラッカーがより優れたゼロショット性能と効率的なインタラクションをもたらすことが示唆された。
論文 参考訳(メタデータ) (2023-07-03T17:58:01Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - CPSeg: Cluster-free Panoptic Segmentation of 3D LiDAR Point Clouds [2.891413712995641]
CPSegと呼ばれるLiDAR点雲のための新しいリアルタイム・エンド・エンド・エンド・パノプティクス・セグメンテーション・ネットワークを提案する。
CPSegは、共有エンコーダ、デュアルデコーダ、タスク認識アテンションモジュール(TAM)、クラスタフリーインスタンスセグメンテーションヘッドを備える。
論文 参考訳(メタデータ) (2021-11-02T16:44:06Z) - Learn to Learn Metric Space for Few-Shot Segmentation of 3D Shapes [17.217954254022573]
メタラーニングに基づく3次元形状分割手法を提案する。
本稿では,ShapeNet部データセットにおける提案手法の優れた性能を,既存のベースラインや最先端の半教師手法と比較し,いくつかのシナリオで示す。
論文 参考訳(メタデータ) (2021-07-07T01:47:00Z) - Learning from Counting: Leveraging Temporal Classification for Weakly
Supervised Object Localization and Detection [4.971083368517706]
2次元画像を1次元シーケンスデータにシリアライズするスキャンオーダー技術を導入する。
次にLSTM(Long, Short-Term Memory)とCTCネットワークを組み合わせてオブジェクトのローカライゼーションを実現する。
論文 参考訳(メタデータ) (2021-03-06T02:18:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。