Almost-quantum correlations violate the isotropy and homogeneity principles in flat space
- URL: http://arxiv.org/abs/2411.07631v1
- Date: Tue, 12 Nov 2024 08:21:54 GMT
- Title: Almost-quantum correlations violate the isotropy and homogeneity principles in flat space
- Authors: Akbar Fahmi,
- Abstract summary: Almost quantum correlations are a post-quantum model which satisfies all kinematics of standard quantum correlations except one.
We invoke the isotropy and homogeneity principles of the flat space as a conclusive and distinguishing criterion to rule out the almost-quantum correlations model.
We prove that this condition is sufficient (and necessary) to reduce the almost quantum correlations model to quantum mechanics in both bipartite and multipartite systems.
- Score: 0.0
- License:
- Abstract: One of fascinating phenomena of nature is quantum nonlocality, which is observed upon measurements on spacelike entangled systems. However, there are sets of post-quantum models which have stronger correlations than quantum mechanics, wherein instantaneous communication remains impossible. The set of almost quantum correlations is one of post-quantum models which satisfies all kinematic axioms of standard quantum correlations except one, meanwhile they contain correlations slightly stronger than quantum correlations. There arises the natural question whether there is some fundamental principle of nature which can genuinely characterizes quantum correlations. Here, we provide an answer and close this gap by invoking the isotropy and homogeneity principles of the flat space as a conclusive and distinguishing criterion to rule out the almost-quantum correlations model. In particular, to characterize quantum correlations we impose the isotropy and homogeneity symmetry group structure on the almost quantum correlations model and request that the joint probability distributions corresponding to the Born rule remain invariant. We prove that this condition is sufficient (and necessary) to reduce the almost quantum correlations model to quantum mechanics in both bipartite and multipartite systems.
Related papers
- Precision bounds for multiple currents in open quantum systems [37.69303106863453]
We derivation quantum TURs and KURs for multiple observables in open quantum systems undergoing Markovian dynamics.
Our bounds are tighter than previously derived quantum TURs and KURs for single observables.
We also find an intriguing quantum signature of correlations captured by the off-diagonal element of the Fisher information matrix.
arXiv Detail & Related papers (2024-11-13T23:38:24Z) - Quantifying total correlations in quantum systems through the Pearson correlation coefficient [0.23999111269325263]
We show that a quantum state can be correlated in either a classical or a quantum way, i.e., the two cases are mutually exclusive.
We also illustrate that, at least for the case of two-qubit systems, the distribution of the correlations among certain locally incompatible pairs of observables provides insight in regards to whether a system contains classical or quantum correlations.
arXiv Detail & Related papers (2023-06-26T07:01:28Z) - Causal classification of spatiotemporal quantum correlations [0.0]
We show that certain quantum correlations possess an intrinsic arrow of time, and enable classification of general quantum correlations across space-time.
Our results indicate that certain quantum correlations possess an intrinsic arrow of time, and enable classification of general quantum correlations across space-time based on their (in)compatibility with various underlying causal structures.
arXiv Detail & Related papers (2023-06-15T17:59:18Z) - Detection of arbitrary quantum correlations via synthesized quantum
channels [16.1155239067513]
We demonstrate the extraction of arbitrary types of quantum correlations using a quantum-sensing approach based on sequential weak measurement.
We successfully extract the second- and fourth-order correlations of a nuclear-spin target by another nuclear-spin sensor.
The full characterization of quantum correlations provides a new tool for understanding quantum many-body systems.
arXiv Detail & Related papers (2022-06-13T02:27:17Z) - From no-signalling to quantum states [0.0]
Characterising quantum correlations from physical principles is a central problem in the field of quantum information theory.
We suggest a natural generalisation of no-signalling in the form of no-disturbance to dilated systems.
arXiv Detail & Related papers (2022-04-25T07:06:17Z) - Quantum nonreciprocal interactions via dissipative gauge symmetry [18.218574433422535]
One-way nonreciprocal interactions between two quantum systems are typically described by a cascaded quantum master equation.
We present a new approach for obtaining nonreciprocal quantum interactions that is completely distinct from cascaded quantum systems.
arXiv Detail & Related papers (2022-03-17T15:34:40Z) - Quantum fluctuations and correlations in open quantum Dicke models [0.0]
In the vicinity of ground-state phase transitions quantum correlations can display non-analytic behavior and critical scaling.
Here we consider as a paradigmatic setting the superradiant phase transition of the open quantum Dicke model.
We show that local dissipation, which cannot be treated within the commonly employed Holstein-Primakoff approximation, rather unexpectedly leads to an enhancement of collective quantum correlations.
arXiv Detail & Related papers (2021-10-25T18:15:05Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Distribution of quantum coherence and quantum phase transition in the
Ising system [2.318473106845779]
Quantifying quantum coherence of a given system plays an important role in quantum information science.
We propose an analysis on the critical behavior of two types Ising systems when distribution of quantum coherence.
arXiv Detail & Related papers (2020-01-29T07:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.