BN-DRISHTI: Bangla Document Recognition through Instance-level
Segmentation of Handwritten Text Images
- URL: http://arxiv.org/abs/2306.09351v1
- Date: Wed, 31 May 2023 04:08:57 GMT
- Title: BN-DRISHTI: Bangla Document Recognition through Instance-level
Segmentation of Handwritten Text Images
- Authors: Sheikh Mohammad Jubaer, Nazifa Tabassum, Md. Ataur Rahman, Mohammad
Khairul Islam
- Abstract summary: This paper introduces a deep learning-based object detection framework (YOLO) with Hough and Affine transformation for skew correction.
We present an extended version of the BN-HTRd dataset comprising 786 full-page handwritten Bangla document images.
Evaluation on the test portion of our dataset resulted in an F-score of 99.97% for line and 98% for word segmentation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Handwriting recognition remains challenging for some of the most spoken
languages, like Bangla, due to the complexity of line and word segmentation
brought by the curvilinear nature of writing and lack of quality datasets. This
paper solves the segmentation problem by introducing a state-of-the-art method
(BN-DRISHTI) that combines a deep learning-based object detection framework
(YOLO) with Hough and Affine transformation for skew correction. However,
training deep learning models requires a massive amount of data. Thus, we also
present an extended version of the BN-HTRd dataset comprising 786 full-page
handwritten Bangla document images, line and word-level annotation for
segmentation, and corresponding ground truths for word recognition. Evaluation
on the test portion of our dataset resulted in an F-score of 99.97% for line
and 98% for word segmentation. For comparative analysis, we used three external
Bangla handwritten datasets, namely BanglaWriting, WBSUBNdb_text, and ICDAR
2013, where our system outperformed by a significant margin, further justifying
the performance of our approach on completely unseen samples.
Related papers
- Hypergraph based Understanding for Document Semantic Entity Recognition [65.84258776834524]
We build a novel hypergraph attention document semantic entity recognition framework, HGA, which uses hypergraph attention to focus on entity boundaries and entity categories at the same time.
Our results on FUNSD, CORD, XFUNDIE show that our method can effectively improve the performance of semantic entity recognition tasks.
arXiv Detail & Related papers (2024-07-09T14:35:49Z) - Towards Unified Multi-granularity Text Detection with Interactive Attention [56.79437272168507]
"Detect Any Text" is an advanced paradigm that unifies scene text detection, layout analysis, and document page detection into a cohesive, end-to-end model.
A pivotal innovation in DAT is the across-granularity interactive attention module, which significantly enhances the representation learning of text instances.
Tests demonstrate that DAT achieves state-of-the-art performances across a variety of text-related benchmarks.
arXiv Detail & Related papers (2024-05-30T07:25:23Z) - From Text Segmentation to Smart Chaptering: A Novel Benchmark for
Structuring Video Transcriptions [63.11097464396147]
We introduce a novel benchmark YTSeg focusing on spoken content that is inherently more unstructured and both topically and structurally diverse.
We also introduce an efficient hierarchical segmentation model MiniSeg, that outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-27T15:59:37Z) - Handwritten and Printed Text Segmentation: A Signature Case Study [0.0]
We develop novel approaches to address the challenges of handwritten and printed text segmentation.
Our objective is to recover text from different classes in their entirety, especially enhancing the segmentation performance on overlapping sections.
Our best configuration outperforms prior work on two different datasets by 17.9% and 7.3% on IoU scores.
arXiv Detail & Related papers (2023-07-15T21:49:22Z) - Betrayed by Captions: Joint Caption Grounding and Generation for Open
Vocabulary Instance Segmentation [80.48979302400868]
We focus on open vocabulary instance segmentation to expand a segmentation model to classify and segment instance-level novel categories.
Previous approaches have relied on massive caption datasets and complex pipelines to establish one-to-one mappings between image regions and captions in nouns.
We devise a joint textbfCaption Grounding and Generation (CGG) framework, which incorporates a novel grounding loss that only focuses on matching object to improve learning efficiency.
arXiv Detail & Related papers (2023-01-02T18:52:12Z) - BN-HTRd: A Benchmark Dataset for Document Level Offline Bangla
Handwritten Text Recognition (HTR) and Line Segmentation [0.0]
We introduce a new dataset for offline Handwritten Text Recognition (HTR) from images of Bangla scripts comprising words, lines, and document-level annotations.
The BN-HTRd dataset is based on the BBC Bangla News corpus, meant to act as ground truth texts.
Our dataset includes 788 images of handwritten pages produced by approximately 150 different writers.
arXiv Detail & Related papers (2022-05-29T22:56:26Z) - Robust Text Line Detection in Historical Documents: Learning and
Evaluation Methods [1.9938405188113029]
We present a study conducted using three state-of-the-art systems Doc-UFCN, dhSegment and ARU-Net.
We show that it is possible to build generic models trained on a wide variety of historical document datasets that can correctly segment diverse unseen pages.
arXiv Detail & Related papers (2022-03-23T11:56:25Z) - One-shot Compositional Data Generation for Low Resource Handwritten Text
Recognition [10.473427493876422]
Low resource Handwritten Text Recognition is a hard problem due to the scarce annotated data and the very limited linguistic information.
In this paper we address this problem through a data generation technique based on Bayesian Program Learning.
Contrary to traditional generation approaches, which require a huge amount of annotated images, our method is able to generate human-like handwriting using only one sample of each symbol from the desired alphabet.
arXiv Detail & Related papers (2021-05-11T18:53:01Z) - Minimally-Supervised Structure-Rich Text Categorization via Learning on
Text-Rich Networks [61.23408995934415]
We propose a novel framework for minimally supervised categorization by learning from the text-rich network.
Specifically, we jointly train two modules with different inductive biases -- a text analysis module for text understanding and a network learning module for class-discriminative, scalable network learning.
Our experiments show that given only three seed documents per category, our framework can achieve an accuracy of about 92%.
arXiv Detail & Related papers (2021-02-23T04:14:34Z) - Off-Line Arabic Handwritten Words Segmentation using Morphological
Operators [0.0]
The framework is proposed based on three steps: pre-processing, segmentation, and evaluation.
The proposed model achieved the highest accuracy when compared with the related works.
arXiv Detail & Related papers (2021-01-07T23:38:53Z) - Learning to Select Bi-Aspect Information for Document-Scale Text Content
Manipulation [50.01708049531156]
We focus on a new practical task, document-scale text content manipulation, which is the opposite of text style transfer.
In detail, the input is a set of structured records and a reference text for describing another recordset.
The output is a summary that accurately describes the partial content in the source recordset with the same writing style of the reference.
arXiv Detail & Related papers (2020-02-24T12:52:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.