Off-Line Arabic Handwritten Words Segmentation using Morphological
Operators
- URL: http://arxiv.org/abs/2101.02797v1
- Date: Thu, 7 Jan 2021 23:38:53 GMT
- Title: Off-Line Arabic Handwritten Words Segmentation using Morphological
Operators
- Authors: Nisreen AbdAllah and Serestina Viriri
- Abstract summary: The framework is proposed based on three steps: pre-processing, segmentation, and evaluation.
The proposed model achieved the highest accuracy when compared with the related works.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The main aim of this study is the assessment and discussion of a model for
hand-written Arabic through segmentation. The framework is proposed based on
three steps: pre-processing, segmentation, and evaluation. In the
pre-processing step, morphological operators are applied for Connecting Gaps
(CGs) in written words. Gaps happen when pen lifting-off during writing,
scanning documents, or while converting images to binary type. In the
segmentation step, first removed the small diacritics then bounded a connected
component to segment offline words. Huge data was utilized in the proposed
model for applying a variety of handwriting styles so that to be more
compatible with real-life applications. Consequently, on the automatic
evaluation stage, selected randomly 1,131 images from the IESK-ArDB database,
and then segmented into sub-words. After small gaps been connected, the model
performance evaluation had been reached 88% against the standard ground truth
of the database. The proposed model achieved the highest accuracy when compared
with the related works.
Related papers
- An End-to-End, Segmentation-Free, Arabic Handwritten Recognition Model on KHATT [0.0]
An end-to-end, segmentation-free, deep learning model trained from scratch is proposed.
The training phase yields remarkable results 84% recognition rate on the test dataset at the character level and 71% on the word level.
arXiv Detail & Related papers (2024-06-21T17:42:07Z) - SEGIC: Unleashing the Emergent Correspondence for In-Context Segmentation [87.18373801829314]
In-context segmentation aims at segmenting novel images using a few labeled example images, termed as "in-context examples"
We propose SEGIC, an end-to-end segment-in-context framework built upon a single vision foundation model (VFM)
SEGIC is a straightforward yet effective approach that yields state-of-the-art performance on one-shot segmentation benchmarks.
arXiv Detail & Related papers (2023-11-24T18:59:42Z) - Linguistically Motivated Sign Language Segmentation [51.06873383204105]
We consider two kinds of segmentation: segmentation into individual signs and segmentation into phrases.
Our method is motivated by linguistic cues observed in sign language corpora.
We replace the predominant IO tagging scheme with BIO tagging to account for continuous signing.
arXiv Detail & Related papers (2023-10-21T10:09:34Z) - Character Queries: A Transformer-based Approach to On-Line Handwritten
Character Segmentation [4.128716153761773]
We focus on the scenario where the transcription is known beforehand, in which case the character segmentation becomes an assignment problem.
Inspired by the $k$-means clustering algorithm, we view it from the perspective of cluster assignment and present a Transformer-based architecture.
In order to assess the quality of our approach, we create character segmentation ground truths for two popular on-line handwriting datasets.
arXiv Detail & Related papers (2023-09-06T15:19:04Z) - Diffusion Models for Open-Vocabulary Segmentation [79.02153797465324]
OVDiff is a novel method that leverages generative text-to-image diffusion models for unsupervised open-vocabulary segmentation.
It relies solely on pre-trained components and outputs the synthesised segmenter directly, without training.
arXiv Detail & Related papers (2023-06-15T17:51:28Z) - BN-HTRd: A Benchmark Dataset for Document Level Offline Bangla
Handwritten Text Recognition (HTR) and Line Segmentation [0.0]
We introduce a new dataset for offline Handwritten Text Recognition (HTR) from images of Bangla scripts comprising words, lines, and document-level annotations.
The BN-HTRd dataset is based on the BBC Bangla News corpus, meant to act as ground truth texts.
Our dataset includes 788 images of handwritten pages produced by approximately 150 different writers.
arXiv Detail & Related papers (2022-05-29T22:56:26Z) - A combined approach to the analysis of speech conversations in a contact
center domain [2.575030923243061]
We describe an experimentation with a speech analytics process for an Italian contact center, that deals with call recordings extracted from inbound or outbound flows.
First, we illustrate in detail the development of an in-house speech-to-text solution, based on Kaldi framework.
Then, we evaluate and compare different approaches to the semantic tagging of call transcripts.
Finally, a decision tree inducer, called J48S, is applied to the problem of tagging.
arXiv Detail & Related papers (2022-03-12T10:03:20Z) - Word Segmentation on Discovered Phone Units with Dynamic Programming and
Self-Supervised Scoring [23.822788597966646]
Recent work on unsupervised speech segmentation has used self-supervised models with a phone segmentation module and a word segmentation module that are trained jointly.
This paper compares this joint methodology with an older idea: bottom-up phone-like unit discovery is performed first, and symbolic word segmentation is then performed on top of the discovered units.
I specifically describe a duration-penalized dynamic programming (DPDP) procedure that can be used for either phone or word segmentation by changing the self-supervised scoring network that gives segment costs.
arXiv Detail & Related papers (2022-02-24T07:02:56Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Short texts published on Twitter have earned significant attention as a rich source of information.
Their inherent characteristics, such as the informal, and noisy linguistic style, remain challenging to many natural language processing (NLP) tasks.
This study fulfils an assessment of existing language models in distinguishing the sentiment expressed in tweets by using a rich collection of 22 datasets.
arXiv Detail & Related papers (2021-05-29T21:05:28Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot semantic segmentation aims to segment novel-class objects in a query image with only a few annotated examples.
Most of advanced solutions exploit a metric learning framework that performs segmentation through matching each pixel to a learned foreground prototype.
This framework suffers from biased classification due to incomplete construction of sample pairs with the foreground prototype only.
arXiv Detail & Related papers (2021-04-19T11:21:47Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.