論文の概要: SAFER: Situation Aware Facial Emotion Recognition
- arxiv url: http://arxiv.org/abs/2306.09372v1
- Date: Wed, 14 Jun 2023 20:42:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-19 16:47:42.118266
- Title: SAFER: Situation Aware Facial Emotion Recognition
- Title(参考訳): SAFER:顔の感情認識を意識した状況
- Authors: Mijanur Palash, Bharat Bhargava
- Abstract要約: 表情から感情を認識する新しいシステムであるSAFERを提案する。
最先端のディープラーニング技術を使って、顔画像からさまざまな特徴を抽出する。
目に見えない多様な表情に適応でき、現実世界の用途に適している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we present SAFER, a novel system for emotion recognition from
facial expressions. It employs state-of-the-art deep learning techniques to
extract various features from facial images and incorporates contextual
information, such as background and location type, to enhance its performance.
The system has been designed to operate in an open-world setting, meaning it
can adapt to unseen and varied facial expressions, making it suitable for
real-world applications. An extensive evaluation of SAFER against existing
works in the field demonstrates improved performance, achieving an accuracy of
91.4% on the CAER-S dataset. Additionally, the study investigates the effect of
novelty such as face masks during the Covid-19 pandemic on facial emotion
recognition and critically examines the limitations of mainstream facial
expressions datasets. To address these limitations, a novel dataset for facial
emotion recognition is proposed. The proposed dataset and the system are
expected to be useful for various applications such as human-computer
interaction, security, and surveillance.
- Abstract(参考訳): 本稿では,表情から感情を認識する新しいシステムであるSAFERを提案する。
最先端のディープラーニング技術を使用して、顔画像からさまざまな特徴を抽出し、背景や位置といったコンテキスト情報を組み込んでパフォーマンスを向上させる。
このシステムはオープンワールドで動作するように設計されており、目に見えない様々な表情に適応でき、現実世界のアプリケーションに適している。
この分野における既存の作業に対するSAFERの広範な評価は、CAER-Sデータセットで91.4%の精度で改善された性能を示す。
さらに、Covid-19パンデミック時の顔マスクなどの新奇性が顔の感情認識に及ぼす影響を調査し、主流の表情データセットの限界を批判的に調査する。
これらの制約に対処するために,表情認識のための新しいデータセットを提案する。
提案するデータセットとシステムは,人間とコンピュータのインタラクションやセキュリティ,監視など,さまざまな用途に有用であると思われる。
関連論文リスト
- CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
本稿では、顔エンコーダの最後の層に異なるデータセットの特定の感情特性を適応させるメカニズムであるContrastive Inhibitory Adaptati On(CIAO)を提案する。
CIAOは、非常にユニークな感情表現を持つ6つの異なるデータセットに対して、表情認識性能が改善されている。
論文 参考訳(メタデータ) (2022-08-10T15:46:05Z) - Emotion Separation and Recognition from a Facial Expression by Generating the Poker Face with Vision Transformers [57.1091606948826]
我々はこれらの課題に対処するため,ポーカー・フェイス・ビジョン・トランスフォーマー (PF-ViT) と呼ばれる新しいFERモデルを提案する。
PF-ViTは、対応するポーカーフェースを生成して、乱れを認識できない感情を静的な顔画像から分離し、認識することを目的としている。
PF-ViTはバニラビジョントランスフォーマーを使用し、そのコンポーネントは大規模な表情データセット上でMasked Autoencodeerとして事前トレーニングされている。
論文 参考訳(メタデータ) (2022-07-22T13:39:06Z) - I Only Have Eyes for You: The Impact of Masks On Convolutional-Based
Facial Expression Recognition [78.07239208222599]
今回提案したFaceChannelがマスクを持つ人からの表情認識にどのように適応するかを評価します。
また、制約された社会的相互作用シナリオにおける顔の特徴の変化を学習し、組み合わせるためのFaceChannelの本質的な能力を示すために、特定の機能レベルの可視化も行います。
論文 参考訳(メタデータ) (2021-04-16T20:03:30Z) - A Multi-resolution Approach to Expression Recognition in the Wild [9.118706387430883]
顔認識タスクを解決するためのマルチリゾリューション手法を提案する。
私たちは、しばしば異なる解像度で画像が取得されるという観察を直感的に根拠としています。
我々は、Affect-in-the-Wild 2データセットに基づいてトレーニングされたSqueeze-and-Excitationブロックを備えたResNetのようなアーキテクチャを使用する。
論文 参考訳(メタデータ) (2021-03-09T21:21:02Z) - Facial Expressions as a Vulnerability in Face Recognition [73.85525896663371]
本研究では,顔認識システムのセキュリティ脆弱性としての表情バイアスについて検討する。
本稿では,表情バイアスが顔認識技術の性能に与える影響を包括的に分析する。
論文 参考訳(メタデータ) (2020-11-17T18:12:41Z) - Interpretable Image Emotion Recognition: A Domain Adaptation Approach Using Facial Expressions [11.808447247077902]
本稿では,ジェネリックイメージ中の感情を識別するための特徴に基づくドメイン適応手法を提案する。
これは、事前訓練されたモデルと、画像感情認識(IER)のための十分に注釈付けされたデータセットの限られた可用性の課題に対処する。
提案されたIERシステムは、IAPSaデータセットの60.98%、ArtPhotoデータセットの58.86%、FIデータセットの69.13%、EMOTICデータセットの58.06%の感情分類精度を示した。
論文 参考訳(メタデータ) (2020-11-17T02:55:16Z) - Learning Emotional-Blinded Face Representations [77.7653702071127]
感情反応に関連する表情に盲目な2つの顔表現を提案する。
この作業は、個人データ保護に関する新たな国際規則によって動機付けられている。
論文 参考訳(メタデータ) (2020-09-18T09:24:10Z) - Real-time Facial Expression Recognition "In The Wild'' by Disentangling
3D Expression from Identity [6.974241731162878]
本稿では,1枚のRGB画像から人間の感情認識を行う新しい手法を提案する。
顔のダイナミックス、アイデンティティ、表情、外観、3Dポーズのバリエーションに富んだ大規模な顔ビデオデータセットを構築した。
提案するフレームワークは毎秒50フレームで動作し、3次元表現変動のパラメータを頑健に推定することができる。
論文 参考訳(メタデータ) (2020-05-12T01:32:55Z) - Learning to Augment Expressions for Few-shot Fine-grained Facial
Expression Recognition [98.83578105374535]
顔表情データベースF2EDについて述べる。
顔の表情は119人から54人まで、200万枚以上の画像が含まれている。
実世界のシナリオでは,不均一なデータ分布やサンプルの欠如が一般的であるので,数発の表情学習の課題を評価する。
顔画像合成のための統合されたタスク駆動型フレームワークであるComposeal Generative Adversarial Network (Comp-GAN) 学習を提案する。
論文 参考訳(メタデータ) (2020-01-17T03:26:32Z) - An adversarial learning framework for preserving users' anonymity in
face-based emotion recognition [6.9581841997309475]
本稿では,反復的手順で学習した畳み込みニューラルネットワーク(CNN)アーキテクチャに依存する逆学習フレームワークを提案する。
その結果、提案手法は、感情認識の精度を保ち、顔認証の劣化を抑えるための畳み込み変換を学習できることが示唆された。
論文 参考訳(メタデータ) (2020-01-16T22:45:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。