論文の概要: Understanding Parameter Sharing in Transformers
- arxiv url: http://arxiv.org/abs/2306.09380v1
- Date: Thu, 15 Jun 2023 10:48:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-19 16:35:44.968971
- Title: Understanding Parameter Sharing in Transformers
- Title(参考訳): 変圧器におけるパラメータ共有の理解
- Authors: Ye Lin, Mingxuan Wang, Zhexi Zhang, Xiaohui Wang, Tong Xiao, Jingbo
Zhu
- Abstract要約: トランスフォーマーに関するこれまでの研究は、異なるレイヤでパラメータを共有することに集中しており、モデルの深さを増大させることで、限られたパラメータを持つモデルの性能を向上させることができる。
このアプローチの成功は, モデル複雑性の増加により, ごく一部に過ぎず, 収束性の向上に大きく寄与することを示す。
8つの機械翻訳タスクの実験結果から,パラメータ共有モデルのモデル複雑性を半分に抑えて,我々のモデルが競合性能を達成することが示された。
- 参考スコア(独自算出の注目度): 53.75988363281843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameter sharing has proven to be a parameter-efficient approach. Previous
work on Transformers has focused on sharing parameters in different layers,
which can improve the performance of models with limited parameters by
increasing model depth. In this paper, we study why this approach works from
two perspectives. First, increasing model depth makes the model more complex,
and we hypothesize that the reason is related to model complexity (referring to
FLOPs). Secondly, since each shared parameter will participate in the network
computation several times in forward propagation, its corresponding gradient
will have a different range of values from the original model, which will
affect the model convergence. Based on this, we hypothesize that training
convergence may also be one of the reasons. Through further analysis, we show
that the success of this approach can be largely attributed to better
convergence, with only a small part due to the increased model complexity.
Inspired by this, we tune the training hyperparameters related to model
convergence in a targeted manner. Experiments on 8 machine translation tasks
show that our model achieves competitive performance with only half the model
complexity of parameter sharing models.
- Abstract(参考訳): パラメータ共有はパラメータ効率のよいアプローチであることが証明されている。
トランスフォーマーに関するこれまでの研究は、異なるレイヤでパラメータを共有することに集中しており、モデル深さを増やすことで、限られたパラメータを持つモデルの性能を向上させることができる。
本稿では,このアプローチがなぜ2つの視点から機能するのかを考察する。
まず、モデル深度の増加によりモデルがより複雑になり、その理由はモデルの複雑さに関連する(FLOPを参照)と仮定する。
第二に、各共有パラメータは前方伝播においてネットワーク計算に数回参加するので、対応する勾配は元のモデルとは異なる範囲の値を持ち、モデル収束に影響を与える。
これに基づいて、トレーニングの収束も理由の1つだと仮定する。
さらなる分析を通して、このアプローチの成功は、モデル複雑性の増加による小さな部分のみによる、より収束性の向上に起因することが示される。
これに触発されて,モデル収束に関連するトレーニングハイパーパラメータをターゲットとしたチューニングを行う。
8つの機械翻訳タスクにおける実験により、パラメータ共有モデルのモデル複雑性の半分しか持たない競合性能が得られた。
関連論文リスト
- Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
ディープモデルマージ(Deep Modelmerging)は、複数の微調整モデルを組み合わせて、さまざまなタスクやドメインにまたがる能力を活用する、新たな研究方向を示すものだ。
現在のモデルマージ技術は、全ての利用可能なモデルを同時にマージすることに集中しており、重量行列に基づく手法が主要なアプローチである。
本稿では,モデルを逐次処理するトレーニングフリーなプロジェクションベース連続マージ手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T13:17:24Z) - Merging Feed-Forward Sublayers for Compressed Transformers [16.746335565636976]
モデル内の類似パラメータ群をマージすることで,モデル圧縮に対する新しいアプローチを提案する。
具体的には、Transformerモデルでフィードフォワードサブレイヤを分離し、アライメントし、マージする。
モデルフィードフォワードサブレイヤの3分の1以上を組み合わせながら、元のモデルに匹敵する性能を示す。
論文 参考訳(メタデータ) (2025-01-10T17:25:11Z) - Parameter Competition Balancing for Model Merging [13.66727853299506]
PCB-Mergingは、効果的なモデルマージのために各パラメータの係数を調整する訓練不要の手法である。
PCB-Mergingは、複数のモダリティ、ドメイン、モデルサイズ、タスク数、微調整フォーム、および大きな言語モデルにわたる大幅なパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2024-10-03T11:17:58Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Activated Parameter Locating via Causal Intervention for Model Merging [26.98015572633289]
モデルマージは複数のモデルを1つのモデルに組み合わせ、追加のトレーニングを必要とせずに、説得力のある一般化を実現する。
既存のモデルでは、デルタパラメータの一部を落として、パフォーマンスを維持しながらコンフリクトを緩和できることが示されている。
本稿では、因果的介入を利用して重要度を推定し、より正確なパラメータのドロップとコンフリクトの軽減を可能にするアクティブ・ロケーティング(APL)手法を提案する。
論文 参考訳(メタデータ) (2024-08-18T14:00:00Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - DPPA: Pruning Method for Large Language Model to Model Merging [39.13317231533299]
本稿では、複雑な微調整モデルを統合するという課題に対処するため、DPPA(Dynamic Pruning Partition Amplification)と呼ばれる2段階の手法を提案する。
提案手法は,ドメイン固有のパラメータの20%しか保持せず,他の手法に匹敵する性能を提供する。
提案手法では, プレニング後の性能が優れており, モデルマージにおける性能が20%近く向上した。
論文 参考訳(メタデータ) (2024-03-05T09:12:49Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T12:52:49Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z) - Reconstruction of Pairwise Interactions using Energy-Based Models [3.553493344868414]
ペアワイズモデルとニューラルネットワークを組み合わせたハイブリッドモデルは,ペアワイズインタラクションの再構築において有意な改善をもたらす可能性があることを示す。
これは、単純な解釈可能なモデルと複雑なブラックボックスモデルが必ずしも二分法ではないという一般的な考え方と一致している。
論文 参考訳(メタデータ) (2020-12-11T20:15:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。