論文の概要: Cross-Modal Video to Body-joints Augmentation for Rehabilitation
Exercise Quality Assessment
- arxiv url: http://arxiv.org/abs/2306.09546v1
- Date: Thu, 15 Jun 2023 23:23:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-19 15:38:04.836353
- Title: Cross-Modal Video to Body-joints Augmentation for Rehabilitation
Exercise Quality Assessment
- Title(参考訳): リハビリテーション・エクササイズ評価のためのボディジョイントへのクロスモーダルビデオ
- Authors: Ali Abedi, Mobin Malmirian, and Shehroz S. Khan
- Abstract要約: 運動に基づくリハビリテーションプログラムは、生活の質を高め、死亡率と再入院を減らすことが示されている。
AIによる仮想リハビリテーションプログラムにより、患者は自宅で独立して運動を完了できる一方、AIアルゴリズムは運動データを分析して患者にフィードバックを与え、臨床医に進捗を報告することができる。
本稿では,RGBビデオを用いてリハビリテーション運動の質を評価するための新しいアプローチを提案する。また,連続したRGBビデオフレームから骨格体関節の配列を抽出し,多対一の連続ニューラルネットワークを用いて解析し,運動品質を評価する。
- 参考スコア(独自算出の注目度): 3.544570529705401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exercise-based rehabilitation programs have been shown to enhance quality of
life and reduce mortality and rehospitalizations. AI-driven virtual
rehabilitation programs enable patients to complete exercises independently at
home while AI algorithms can analyze exercise data to provide feedback to
patients and report their progress to clinicians. This paper introduces a novel
approach to assessing the quality of rehabilitation exercises using RGB video.
Sequences of skeletal body joints are extracted from consecutive RGB video
frames and analyzed by many-to-one sequential neural networks to evaluate
exercise quality. Existing datasets for exercise rehabilitation lack adequate
samples for training deep sequential neural networks to generalize effectively.
A cross-modal data augmentation approach is proposed to resolve this problem.
Visual augmentation techniques are applied to video data, and body joints
extracted from the resulting augmented videos are used for training sequential
neural networks. Extensive experiments conducted on the KInematic assessment of
MOvement and clinical scores for remote monitoring of physical REhabilitation
(KIMORE) dataset, demonstrate the superiority of the proposed method over
previous baseline approaches. The ablation study highlights a significant
enhancement in exercise quality assessment following cross-modal augmentation.
- Abstract(参考訳): 運動に基づくリハビリテーションプログラムは、生活の質を高め、死亡率と再入院を減らすことが示されている。
aiによるバーチャルリハビリテーションプログラムは、患者を自宅で独立して運動させ、aiアルゴリズムは運動データを分析して患者にフィードバックを与え、臨床医に進捗を報告できる。
本稿では,RGBビデオを用いたリハビリテーション運動の質を評価するための新しいアプローチを提案する。
連続したRGBビデオフレームから骨格関節の配列を抽出し,多対一の逐次ニューラルネットワークを用いて解析し,運動の質を評価する。
運動リハビリテーションのための既存のデータセットには、ディープシーケンシャルニューラルネットワークを効果的に一般化するための十分なサンプルがない。
この問題を解決するために,クロスモーダルデータ拡張手法を提案する。
映像データに視覚増強技術を適用し、その結果の強化ビデオから抽出された体節を用いて、シーケンシャルニューラルネットワークのトレーニングを行う。
身体リハビリテーション(KIMORE)データセットの遠隔監視のための運動のキネマティックな評価と臨床成績に関する広範な実験により,提案手法が従来のベースラインアプローチよりも優れていることを示す。
アブレーション研究は、クロスモーダル増強後の運動品質評価の大幅な向上を強調する。
関連論文リスト
- A Medical Low-Back Pain Physical Rehabilitation Dataset for Human Body Movement Analysis [0.6990493129893111]
本稿では,低背痛リハビリテーションを施行した臨床患者の医療データセットについて,4つの課題に対処し,提案する。
データセットには、3D Kinectスケルトンの位置と向き、RGBビデオ、2Dスケルトンデータ、正確性を評価するための医用アノテーション、身体部分とタイムパンのエラー分類とローカライゼーションが含まれている。
論文 参考訳(メタデータ) (2024-06-29T19:50:06Z) - Rehabilitation Exercise Quality Assessment through Supervised Contrastive Learning with Hard and Soft Negatives [2.166000001057538]
運動ベースのリハビリテーションプログラムは、生活の質を高め、死亡率と再入院率を減らすのに有効であることが証明されている。
これらのプログラムは一般的に様々なエクササイズタイプを規定しており、リハビリテーションエクササイズアセスメントデータセットにおいて明確な課題となっている。
本稿では,すべての運動タイプに適用可能な単一モデルをトレーニングするための,硬質で軟質な負のサンプルを用いた教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-05T08:38:25Z) - D-STGCNT: A Dense Spatio-Temporal Graph Conv-GRU Network based on
transformer for assessment of patient physical rehabilitation [0.3626013617212666]
本稿では,リハビリテーション演習を評価するための新しいグラフベースモデルを提案する。
デンス接続とGRU機構は、大きな3Dスケルトン入力を迅速に処理するために使用される。
KIMOREおよびUI-PRMDデータセットに対する提案手法の評価は,その可能性を強調した。
論文 参考訳(メタデータ) (2023-12-21T00:38:31Z) - Design, Development, and Evaluation of an Interactive Personalized
Social Robot to Monitor and Coach Post-Stroke Rehabilitation Exercises [68.37238218842089]
パーソナライズされたリハビリテーションのための対話型ソーシャルロボット運動指導システムを開発した。
このシステムは、ニューラルネットワークモデルとルールベースのモデルを統合し、患者のリハビリテーション運動を自動的に監視し、評価する。
我々のシステムは,新たな参加者に適応し,専門家の合意レベルに匹敵する,エクササイズを評価するための平均パフォーマンス0.81を達成できる。
論文 参考訳(メタデータ) (2023-05-12T17:37:04Z) - Rehabilitation Exercise Repetition Segmentation and Counting using
Skeletal Body Joints [6.918076156491651]
本稿では,患者が実施するリハビリテーション運動の繰り返しを分割・数えるための新しいアプローチを提案する。
骨格の関節は、深度カメラまたは患者のRGBビデオに適用されたコンピュータビジョン技術によって取得することができる。
様々なシーケンシャルニューラルネットワークは、骨格体関節の配列を分析し、繰り返しセグメンテーションとカウントを行うように設計されている。
論文 参考訳(メタデータ) (2023-04-19T15:22:15Z) - Mimetic Muscle Rehabilitation Analysis Using Clustering of Low
Dimensional 3D Kinect Data [1.53119329713143]
本報告では, 筋損傷による顔面麻痺患者のリハビリテーションに対する非観血的アプローチについて考察する。
本研究は,HB(House-Brackmann)尺度など,現在の主観的アプローチと比較して,リハビリテーションプロセスの客観的化を目的としている。
この研究は、Kinectステレオビジョンカメラを用いて得られた120の計測値を持つ85人の異なる患者のデータセットを含んでいる。
論文 参考訳(メタデータ) (2023-02-15T09:45:27Z) - Automated Fidelity Assessment for Strategy Training in Inpatient
Rehabilitation using Natural Language Processing [53.096237570992294]
戦略トレーニング (Strategy Training) とは、脳卒中後の認知障害患者に障害を減らすためのスキルを教える、リハビリテーションのアプローチである。
標準化された忠実度評価は治療原則の遵守度を測定するために用いられる。
本研究では,ルールベースNLPアルゴリズム,長短項メモリ(LSTM)モデル,および変換器(BERT)モデルからの双方向エンコーダ表現を開発した。
論文 参考訳(メタデータ) (2022-09-14T15:33:30Z) - Neural Maximum A Posteriori Estimation on Unpaired Data for Motion
Deblurring [87.97330195531029]
本稿では、ニューラルネットワークをトレーニングし、失明したデータから視覚情報や鋭いコンテンツを復元するためのニューラルネットワークの最大Aポストエリオリ(NeurMAP)推定フレームワークを提案する。
提案されたNeurMAPは、既存のデブロアリングニューラルネットワークに対するアプローチであり、未使用データセット上のイメージデブロアリングネットワークのトレーニングを可能にする最初のフレームワークである。
論文 参考訳(メタデータ) (2022-04-26T08:09:47Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - One-shot action recognition towards novel assistive therapies [63.23654147345168]
この作業は、アクション模倣ゲームを含む医療療法の自動分析によって動機づけられます。
提案手法は、異種運動データ条件を標準化する前処理ステップを組み込んだものである。
自閉症者に対するセラピー支援のための自動ビデオ分析の実際の利用事例について検討した。
論文 参考訳(メタデータ) (2021-02-17T19:41:37Z) - A Review of Computational Approaches for Evaluation of Rehabilitation
Exercises [58.720142291102135]
本稿では,モーションキャプチャシステムを用いたリハビリテーションプログラムにおける患者のパフォーマンスを評価するための計算手法についてレビューする。
エクササイズ評価のための再検討された計算手法は, 離散的な運動スコア, ルールベース, テンプレートベースアプローチの3つのカテゴリに分類される。
論文 参考訳(メタデータ) (2020-02-29T22:18:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。