論文の概要: QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
- arxiv url: http://arxiv.org/abs/2306.09549v3
- Date: Mon, 22 Jan 2024 21:53:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-24 19:28:31.335462
- Title: QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
- Title(参考訳): QH9:QM9分子の量子ハミルトン予測ベンチマーク
- Authors: Haiyang Yu, Meng Liu, Youzhi Luo, Alex Strasser, Xiaofeng Qian,
Xiaoning Qian, Shuiwang Ji
- Abstract要約: 我々は、999の分子動力学軌道に対して正確なハミルトン行列を提供するために、QH9と名付けられた新しい量子ハミルトンデータセットを生成する。
現在の機械学習モデルでは、任意の分子に対するハミルトン行列を予測する能力がある。
- 参考スコア(独自算出の注目度): 72.73126947400603
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Supervised machine learning approaches have been increasingly used in
accelerating electronic structure prediction as surrogates of first-principle
computational methods, such as density functional theory (DFT). While numerous
quantum chemistry datasets focus on chemical properties and atomic forces, the
ability to achieve accurate and efficient prediction of the Hamiltonian matrix
is highly desired, as it is the most important and fundamental physical
quantity that determines the quantum states of physical systems and chemical
properties. In this work, we generate a new Quantum Hamiltonian dataset, named
as QH9, to provide precise Hamiltonian matrices for 999 molecular dynamics
trajectories and 130,831 stable molecular geometries, based on the QM9 dataset.
By designing benchmark tasks with various molecules, we show that current
machine learning models have the capacity to predict Hamiltonian matrices for
arbitrary molecules. Both the QH9 dataset and the baseline models are provided
to the community through an open-source benchmark, which can be highly valuable
for developing machine learning methods and accelerating molecular and
materials design for scientific and technological applications. Our benchmark
is publicly available at
https://github.com/divelab/AIRS/tree/main/OpenDFT/QHBench.
- Abstract(参考訳): 教師付き機械学習アプローチは、密度汎関数理論(DFT)のような第一原理計算手法の代用として、電子構造予測の加速にますます利用されている。
多くの量子化学データセットは化学的性質と原子力に焦点を当てているが、物理系と化学特性の量子状態を決定する最も重要かつ基本的な物理量であるため、ハミルトン行列の正確かつ効率的な予測を達成する能力は非常に望ましい。
本研究では、量子ハミルトニアンデータセットqh9を作成し、qm9データセットに基づいて、999の分子動力学軌道と130,831の安定な分子幾何学のための正確なハミルトニアン行列を提供する。
様々な分子を用いてベンチマークタスクを設計することにより、現在の機械学習モデルは任意の分子に対するハミルトン行列を予測する能力を有することを示す。
QH9データセットとベースラインモデルの両方がオープンソースベンチマークを通じてコミュニティに提供されており、機械学習手法の開発や、科学および技術応用のための分子および材料設計の加速に非常に有用である。
私たちのベンチマークはhttps://github.com/divelab/AIRS/tree/main/OpenDFT/QHBenchで公開されています。
関連論文リスト
- $\nabla^2$DFT: A Universal Quantum Chemistry Dataset of Drug-Like Molecules and a Benchmark for Neural Network Potentials [35.949502493236146]
この研究は、nablaDFTをベースにした$nabla2$DFTと呼ばれる新しいデータセットとベンチマークを提示している。
分子構造の2倍、コンフォーメーションの3倍、新しいデータタイプとタスク、最先端のモデルを含んでいる。
$nabla2$DFTは、大量の薬物様分子の緩和軌道を含む最初のデータセットである。
論文 参考訳(メタデータ) (2024-06-20T14:14:59Z) - Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy [9.81014501502049]
金標準CCSD(T)計算をトレーニングデータとして,有機分子の電子構造を統一した機械学習手法を開発した。
炭化水素分子を用いたモデルでは, 計算コストと様々な量子化学特性の予測精度において, 広範に用いられているハイブリッド関数と二重ハイブリッド関数でDFTより優れていた。
論文 参考訳(メタデータ) (2024-05-09T19:51:27Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - Molecular Geometry-aware Transformer for accurate 3D Atomic System
modeling [51.83761266429285]
本稿では,ノード(原子)とエッジ(結合と非結合の原子対)を入力とし,それらの相互作用をモデル化するトランスフォーマーアーキテクチャを提案する。
MoleformerはOC20の緩和エネルギー予測の初期状態の最先端を実現し、QM9では量子化学特性の予測に非常に競争力がある。
論文 参考訳(メタデータ) (2023-02-02T03:49:57Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
分子系の励起電子状態の計算にD波量子アニールを用いることを実証する。
これらのシミュレーションは、太陽光発電、半導体技術、ナノサイエンスなど、いくつかの分野で重要な役割を果たしている。
論文 参考訳(メタデータ) (2021-07-01T01:02:17Z) - On the equivalence of molecular graph convolution and molecular wave
function with poor basis set [7.106986689736826]
量子物理学に基づく機械学習モデルである量子深度場(QDF)について述べる。
分子エネルギー予測タスクでは、外挿の可能性を実証し、小さな分子でQDFモデルを訓練し、大きな分子でテストし、高い性能を実現した。
論文 参考訳(メタデータ) (2020-11-16T13:20:35Z) - Quantum HF/DFT-Embedding Algorithms for Electronic Structure
Calculations: Scaling up to Complex Molecular Systems [0.0]
本稿では,量子電子構造計算の古典計算環境への埋め込みを提案する。
我々は、選択された活性空間上の不活性電子の作用を記述する平均場を含む実効ハミルトニアンを構築することでこれを達成した。
論文 参考訳(メタデータ) (2020-09-03T18:35:50Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
無機材料のバンドギャップを予測できるいくつかの異なるグラフ畳み込みネットワークを提示し、比較する。
モデルは、それぞれの軌道自体の情報と相互の相互作用の2つの異なる特徴を組み込むように開発されている。
その結果,クロスバリデーションにより予測精度が期待できることがわかった。
論文 参考訳(メタデータ) (2020-05-27T13:32:10Z) - Molecular Design Using Signal Processing and Machine Learning:
Time-Frequency-like Representation and Forward Design [9.986608420951558]
我々は、QM-MLパイプラインによく知られた信号処理技術を統合することで、強力な機械(QM-SP-ML)を得ることを示す。
本研究では,分子の構造的,幾何学的,エネルギー的,電子的,熱力学的特性を時間周波数的に表現する。
新しいQM-SP-MLモデルは、QM9データセット(133,855個の分子と19個の性質からなる)でテストされ、許容される化学的精度より低い平均絶対誤差(MAE)を持つ分子の性質を予測することができる。
論文 参考訳(メタデータ) (2020-04-20T00:58:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。