論文の概要: Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy
- arxiv url: http://arxiv.org/abs/2405.12229v2
- Date: Mon, 24 Jun 2024 21:16:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 19:49:31.141600
- Title: Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy
- Title(参考訳): 結合クラスタ精度に迫る分子電子構造に対するマルチタスク学習
- Authors: Hao Tang, Brian Xiao, Wenhao He, Pero Subasic, Avetik R. Harutyunyan, Yao Wang, Fang Liu, Haowei Xu, Ju Li,
- Abstract要約: 金標準CCSD(T)計算をトレーニングデータとして,有機分子の電子構造を統一した機械学習手法を開発した。
炭化水素分子を用いたモデルでは, 計算コストと様々な量子化学特性の予測精度において, 広範に用いられているハイブリッド関数と二重ハイブリッド関数でDFTより優れていた。
- 参考スコア(独自算出の注目度): 9.81014501502049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) plays an important role in quantum chemistry, providing fast-to-evaluate predictive models for various properties of molecules. However, most existing ML models for molecular electronic properties use density functional theory (DFT) databases as ground truth in training, and their prediction accuracy cannot surpass that of DFT. In this work, we developed a unified ML method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data. Tested on hydrocarbon molecules, our model outperforms DFT with the widely-used hybrid and double hybrid functionals in computational costs and prediction accuracy of various quantum chemical properties. As case studies, we apply the model to aromatic compounds and semiconducting polymers on both ground state and excited state properties, demonstrating its accuracy and generalization capability to complex systems that are hard to calculate using CCSD(T)-level methods.
- Abstract(参考訳): 機械学習(ML)は量子化学において重要な役割を担い、分子の様々な性質に対する高速かつ評価可能な予測モデルを提供する。
しかし、分子電子特性に関する既存のMLモデルは、トレーニングにおいて基底真理として密度汎関数理論(DFT)データベースを使用し、それらの予測精度はDFTのそれを超えることはできない。
本研究では, 金標準CCSD(T)計算をトレーニングデータとして, 有機分子の電子構造を統一したML法を開発した。
炭化水素分子を用いたモデルでは, 計算コストと様々な量子化学特性の予測精度において, 広範に使われているハイブリッド関数と二重ハイブリッド関数でDFTより優れていた。
そこで本研究では, CCSD(T) レベルの計算が困難である複雑なシステムに対して, その精度と一般化能力を実証し, 基底状態および励起状態特性の両面において芳香族化合物および半導電性ポリマーにモデルを適用した。
関連論文リスト
- Electronic excited states from physically-constrained machine learning [0.0]
本稿では,実効ハミルトニアンの対称性適応MLモデルをトレーニングし,量子力学計算から電子励起を再現する統合モデリング手法を提案する。
結果として得られるモデルは、トレーニングされた分子よりもずっと大きく、より複雑な分子を予測できる。
論文 参考訳(メタデータ) (2023-11-01T20:49:59Z) - Overcoming the Barrier of Orbital-Free Density Functional Theory for
Molecular Systems Using Deep Learning [46.08497356503155]
軌道自由密度汎関数理論(英: Orbital-free density functional theory、OFDFT)は、Kohn-Sham DFTよりも低コストでスケールできる量子化学の定式化である。
本稿では、深層学習関数モデルを用いて分子システムを解くことができるOFFTアプローチであるM-OFDFTを提案する。
論文 参考訳(メタデータ) (2023-09-28T16:33:36Z) - Accurate machine learning force fields via experimental and simulation
data fusion [0.0]
機械学習(ML)ベースの力場は、量子レベルの精度で古典的原子間ポテンシャルのスケールにまたがる能力のために、ますます関心が高まりつつある。
ここでは、密度汎関数理論(DFT)計算と実験的に測定された力学特性と格子パラメータの両方を活用して、チタンのMLポテンシャルを訓練する。
融合したデータ学習戦略は、全ての対象目標を同時に満たすことができ、結果として、単一のソースデータで訓練されたモデルと比較して高い精度の分子モデルが得られることを実証する。
論文 参考訳(メタデータ) (2023-08-17T18:22:19Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
QH9と呼ばれる新しい量子ハミルトンデータセットを生成し、999または2998の分子動力学軌道に対して正確なハミルトン行列を提供する。
現在の機械学習モデルでは、任意の分子に対するハミルトン行列を予測する能力がある。
論文 参考訳(メタデータ) (2023-06-15T23:39:07Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
分子系の励起電子状態の計算にD波量子アニールを用いることを実証する。
これらのシミュレーションは、太陽光発電、半導体技術、ナノサイエンスなど、いくつかの分野で重要な役割を果たしている。
論文 参考訳(メタデータ) (2021-07-01T01:02:17Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - Learning the exchange-correlation functional from nature with fully
differentiable density functional theory [0.0]
我々は、完全に微分可能な3次元コーン・シャム密度汎関数論フレームワーク内での交換相関関数を置き換えるためにニューラルネットワークを訓練する。
我々の訓練された交換相関ネットワークは110分子の集合体における原子化とイオン化エネルギーの予測を改善した。
論文 参考訳(メタデータ) (2021-02-08T14:25:10Z) - A Universal Framework for Featurization of Atomistic Systems [0.0]
物理や機械学習に基づく反応力場は、時間と長さのスケールのギャップを埋めるために使うことができる。
本稿では,原子周囲の電子密度の物理的に関連する多極展開を利用するガウス多極(GMP)デデュール化スキームを紹介する。
我々は,GMPに基づくモデルがQM9データセットの化学的精度を達成できることを示し,新しい要素を外挿してもその精度は妥当であることを示した。
論文 参考訳(メタデータ) (2021-02-04T03:11:00Z) - Multi-task learning for electronic structure to predict and explore
molecular potential energy surfaces [39.228041052681526]
我々はOrbNetモデルを洗練し、分子のエネルギー、力、その他の応答特性を正確に予測する。
このモデルは、すべての電子構造項に対する解析的勾配の導出により、エンドツーエンドで微分可能である。
ドメイン固有の特徴を用いることにより、化学空間をまたいで移動可能であることが示されている。
論文 参考訳(メタデータ) (2020-11-05T06:48:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。