QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
- URL: http://arxiv.org/abs/2306.09549v4
- Date: Thu, 21 Mar 2024 07:16:03 GMT
- Title: QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
- Authors: Haiyang Yu, Meng Liu, Youzhi Luo, Alex Strasser, Xiaofeng Qian, Xiaoning Qian, Shuiwang Ji,
- Abstract summary: We generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 999 or 2998 molecular dynamics trajectories.
We show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules.
- Score: 69.25826391912368
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Supervised machine learning approaches have been increasingly used in accelerating electronic structure prediction as surrogates of first-principle computational methods, such as density functional theory (DFT). While numerous quantum chemistry datasets focus on chemical properties and atomic forces, the ability to achieve accurate and efficient prediction of the Hamiltonian matrix is highly desired, as it is the most important and fundamental physical quantity that determines the quantum states of physical systems and chemical properties. In this work, we generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 999 or 2998 molecular dynamics trajectories and 130,831 stable molecular geometries, based on the QM9 dataset. By designing benchmark tasks with various molecules, we show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules. Both the QH9 dataset and the baseline models are provided to the community through an open-source benchmark, which can be highly valuable for developing machine learning methods and accelerating molecular and materials design for scientific and technological applications. Our benchmark is publicly available at https://github.com/divelab/AIRS/tree/main/OpenDFT/QHBench.
Related papers
- $\nabla^2$DFT: A Universal Quantum Chemistry Dataset of Drug-Like Molecules and a Benchmark for Neural Network Potentials [35.949502493236146]
This work presents a new dataset and benchmark called $nabla2$DFT that is based on the nablaDFT.
It contains twice as much molecular structures, three times more conformations, new data types and tasks, and state-of-the-art models.
$nabla2$DFT is the first dataset that contains relaxation trajectories for a substantial number of drug-like molecules.
arXiv Detail & Related papers (2024-06-20T14:14:59Z) - Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy [9.81014501502049]
We develop a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data.
Tested on hydrocarbon molecules, our model outperforms DFT with the widely-used hybrid and double hybrid functionals in computational costs and prediction accuracy of various quantum chemical properties.
arXiv Detail & Related papers (2024-05-09T19:51:27Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Molecular Geometry-aware Transformer for accurate 3D Atomic System
modeling [51.83761266429285]
We propose a novel Transformer architecture that takes nodes (atoms) and edges (bonds and nonbonding atom pairs) as inputs and models the interactions among them.
Moleformer achieves state-of-the-art on the initial state to relaxed energy prediction of OC20 and is very competitive in QM9 on predicting quantum chemical properties.
arXiv Detail & Related papers (2023-02-02T03:49:57Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - On the equivalence of molecular graph convolution and molecular wave
function with poor basis set [7.106986689736826]
We describe the quantum deep field (QDF), a machine learning model based on an underlying quantum physics.
For molecular energy prediction tasks, we demonstrated the viability of an extrapolation,'' in which we trained a QDF model with small molecules, tested it with large molecules, and achieved high performance.
arXiv Detail & Related papers (2020-11-16T13:20:35Z) - Quantum HF/DFT-Embedding Algorithms for Electronic Structure
Calculations: Scaling up to Complex Molecular Systems [0.0]
We propose the embedding of quantum electronic structure calculation into a classically computed environment.
We achieve this by constructing an effective Hamiltonian that incorporates a mean field describing the action of the inactive electrons on a selected Active Space.
arXiv Detail & Related papers (2020-09-03T18:35:50Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z) - Molecular Design Using Signal Processing and Machine Learning:
Time-Frequency-like Representation and Forward Design [9.986608420951558]
We show that by integrating well-known signal processing techniques in the QM-ML pipeline, we obtain a powerful machinery (QM-SP-ML)
In this study, we show that the time-frequency-like representation of molecules encodes their structural, geometric, energetic, electronic and thermodynamic properties.
Tested on the QM9 dataset (composed of 133,855 molecules and 19 properties), the new QM-SP-ML model is able to predict the properties of molecules with a mean absolute error (MAE) below acceptable chemical accuracy.
arXiv Detail & Related papers (2020-04-20T00:58:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.