Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
- URL: http://arxiv.org/abs/2502.19227v2
- Date: Thu, 20 Mar 2025 17:54:16 GMT
- Title: Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
- Authors: Yunyang Li, Zaishuo Xia, Lin Huang, Xinran Wei, Han Yang, Sam Harshe, Zun Wang, Chang Liu, Jia Zhang, Bin Shao, Mark B. Gerstein,
- Abstract summary: We create a scalable model for Density Functional Theory calculations with physical accuracy.<n>We show it achieves a reduction in total energy prediction error by a factor of 1347 and an SCF calculation speed-up by a factor of 18%.
- Score: 11.085215676429858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Density Functional Theory (DFT) is a pivotal method within quantum chemistry and materials science, with its core involving the construction and solution of the Kohn-Sham Hamiltonian. Despite its importance, the application of DFT is frequently limited by the substantial computational resources required to construct the Kohn-Sham Hamiltonian. In response to these limitations, current research has employed deep-learning models to efficiently predict molecular and solid Hamiltonians, with roto-translational symmetries encoded in their neural networks. However, the scalability of prior models may be problematic when applied to large molecules, resulting in non-physical predictions of ground-state properties. In this study, we generate a substantially larger training set (PubChemQH) than used previously and use it to create a scalable model for DFT calculations with physical accuracy. For our model, we introduce a loss function derived from physical principles, which we call Wavefunction Alignment Loss (WALoss). WALoss involves performing a basis change on the predicted Hamiltonian to align it with the observed one; thus, the resulting differences can serve as a surrogate for orbital energy differences, allowing models to make better predictions for molecular orbitals and total energies than previously possible. WALoss also substantially accelerates self-consistent-field (SCF) DFT calculations. Here, we show it achieves a reduction in total energy prediction error by a factor of 1347 and an SCF calculation speed-up by a factor of 18%. These substantial improvements set new benchmarks for achieving accurate and applicable predictions in larger molecular systems.
Related papers
- NeuralSCF: Neural network self-consistent fields for density functional theory [1.7667864049272723]
Kohn-Sham density functional theory (KS-DFT) has found widespread application in accurate electronic structure calculations.
We propose a neural network self-consistent fields (NeuralSCF) framework that establishes the Kohn-Sham density map as a deep learning objective.
arXiv Detail & Related papers (2024-06-22T15:24:08Z) - Infusing Self-Consistency into Density Functional Theory Hamiltonian Prediction via Deep Equilibrium Models [30.746062388701187]
We introduce a unified neural network architecture, the Deep Equilibrium Density Functional Theory Hamiltonian (DEQH) model.
DEQH model inherently captures the self-consistency nature of Hamiltonian.
We propose a versatile framework that combines DEQ with off-the-shelf machine learning models for predicting Hamiltonians.
arXiv Detail & Related papers (2024-06-06T07:05:58Z) - Self-Consistency Training for Density-Functional-Theory Hamiltonian Prediction [74.84850523400873]
We show that Hamiltonian prediction possesses a self-consistency principle, based on which we propose self-consistency training.
It enables the model to be trained on a large amount of unlabeled data, hence addresses the data scarcity challenge.
It is more efficient than running DFT to generate labels for supervised training, since it amortizes DFT calculation over a set of queries.
arXiv Detail & Related papers (2024-03-14T16:52:57Z) - Hamiltonian truncation tensor networks for quantum field theories [42.2225785045544]
We introduce a tensor network method for the classical simulation of continuous quantum field theories.
The method is built on Hamiltonian truncation and tensor network techniques.
One of the key developments is the exact construction of matrix product state representations of global projectors.
arXiv Detail & Related papers (2023-12-19T19:00:02Z) - Overcoming the Barrier of Orbital-Free Density Functional Theory for
Molecular Systems Using Deep Learning [46.08497356503155]
Orbital-free density functional theory (OFDFT) is a quantum chemistry formulation that has a lower cost scaling than the prevailing Kohn-Sham DFT.
Here we propose M-OFDFT, an OFDFT approach capable of solving molecular systems using a deep learning functional model.
arXiv Detail & Related papers (2023-09-28T16:33:36Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
We generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 999 or 2998 molecular dynamics trajectories.
We show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules.
arXiv Detail & Related papers (2023-06-15T23:39:07Z) - KineticNet: Deep learning a transferable kinetic energy functional for
orbital-free density functional theory [13.437597619451568]
KineticNet is an equivariant deep neural network architecture based on point convolutions adapted to the prediction of quantities on molecular quadrature grids.
For the first time, chemical accuracy of the learned functionals is achieved across input densities and geometries of tiny molecules.
arXiv Detail & Related papers (2023-05-08T17:43:31Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
We adapt common neural network models to learn complex groundstate wavefunctions for several molecular qubit Hamiltonians.
We find that using a neural network model provides a robust improvement over using single-copy measurement outcomes alone to reconstruct observables.
arXiv Detail & Related papers (2022-06-30T17:45:05Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Parsimonious neural networks learn interpretable physical laws [77.34726150561087]
We propose parsimonious neural networks (PNNs) that combine neural networks with evolutionary optimization to find models that balance accuracy with parsimony.
The power and versatility of the approach is demonstrated by developing models for classical mechanics and to predict the melting temperature of materials from fundamental properties.
arXiv Detail & Related papers (2020-05-08T16:15:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.