論文の概要: Personalized Summarization of Scientific Scholarly Texts
- arxiv url: http://arxiv.org/abs/2306.09604v2
- Date: Sun, 27 Oct 2024 15:25:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 12:02:03.945876
- Title: Personalized Summarization of Scientific Scholarly Texts
- Title(参考訳): 学術論文のパーソナライズされた要約
- Authors: Alka Khurana, Vasudha Bhatnagar, Vikas Kumar,
- Abstract要約: 本稿では,学術論文の抽出要約を生成する教師なしアルゴリズムであるP-Summを提案する。
このアルゴリズムの斬新さは、望ましい知識を取り入れ、個人的な要約の中で望ましくない知識を排除する能力にある。
学術論文からなる4つのデータセット上でのP-Summアルゴリズムの性能評価を行った。
- 参考スコア(独自算出の注目度): 7.080297920827176
- License:
- Abstract: In this paper, we present a proposal for an unsupervised algorithm, P-Summ, that generates an extractive summary of scientific scholarly text to meet the personal knowledge needs of the user. The method delves into the latent semantic space of the document exposed by Weighted Non-negative Matrix Factorization, and scores sentences in consonance with the knowledge needs of the user. The novelty of the algorithm lies in its ability to include desired knowledge and eliminate unwanted knowledge in the personal summary. We also propose a multi-granular evaluation framework, which assesses the quality of generated personal summaries at three levels of granularity - sentence, terms and semantic. The framework uses system generated generic summary instead of human generated summary as gold standard for evaluating the quality of personal summary generated by the algorithm. The effectiveness of the algorithm at the semantic level is evaluated by taking into account the reference summary and the knowledge signals. We evaluate the performance of P-Summ algorithm over four data-sets consisting of scientific articles. Our empirical investigations reveal that the proposed method has the capability to meet negative (or positive) knowledge preferences of the user.
- Abstract(参考訳): 本稿では,ユーザの個人的知識のニーズを満たすために,学術論文の抽出的要約を生成する,教師なしアルゴリズムP-Summを提案する。
本手法は、重み付き非負行列因子化によって暴露された文書の潜在意味空間に展開し、ユーザの知識要求に一致して文をスコアする。
このアルゴリズムの斬新さは、望ましい知識を取り入れ、個人的な要約の中で望ましくない知識を排除する能力にある。
また,生成した個人要約の質を3段階の粒度(文,用語,意味)で評価する多粒度評価フレームワークを提案する。
このフレームワークは、人為的な要約ではなく、システムによって生成された一般的な要約を、アルゴリズムによって生成された個人的要約の質を評価するための金の標準として利用する。
参照要約と知識信号を考慮したセマンティックレベルでのアルゴリズムの有効性を評価する。
学術論文からなる4つのデータセット上でのP-Summアルゴリズムの性能評価を行った。
実験により,提案手法はユーザの否定的(あるいは肯定的な)知識嗜好を満たすことができることがわかった。
関連論文リスト
- Optimizing the role of human evaluation in LLM-based spoken document summarization systems [0.0]
生成AIコンテンツに適した音声文書要約のための評価パラダイムを提案する。
実験設計における堅牢性, 再現性, 信頼性を確保するために, 詳細な評価基準とベストプラクティスガイドラインを提供する。
論文 参考訳(メタデータ) (2024-10-23T18:37:14Z) - FecTek: Enhancing Term Weight in Lexicon-Based Retrieval with Feature Context and Term-level Knowledge [54.61068946420894]
FEature Context と TErm レベルの知識モジュールを導入して,革新的な手法を提案する。
項重みの特徴コンテキスト表現を効果的に強化するために、FCM(Feature Context Module)が導入された。
また,用語レベルの知識を効果的に活用し,用語重みのモデル化プロセスをインテリジェントに導くための用語レベルの知識誘導モジュール(TKGM)を開発した。
論文 参考訳(メタデータ) (2024-04-18T12:58:36Z) - Hierarchical Indexing for Retrieval-Augmented Opinion Summarization [60.5923941324953]
本稿では,抽出アプローチの帰属性と拡張性と,大規模言語モデル(LLM)の一貫性と拡散性を組み合わせた,教師なし抽象的意見要約手法を提案する。
我々の方法であるHIROは、意味的に整理された離散的な階層を通して文を経路にマッピングするインデックス構造を学習する。
推測時にインデックスを投入し、入力レビューから人気意見を含む文群を識別し、検索する。
論文 参考訳(メタデータ) (2024-03-01T10:38:07Z) - Beyond Accuracy: Measuring Representation Capacity of Embeddings to
Preserve Structural and Contextual Information [1.8130068086063336]
埋め込みのテキスト表現能力を測定する手法を提案する。
この研究の背後にある動機は、埋め込みの強さと限界を理解することの重要性にある。
提案手法は, 埋込評価の分野の進展に寄与するだけでなく, 研究者や実践者に定量的な測定力を与える。
論文 参考訳(メタデータ) (2023-09-20T13:21:12Z) - A Novel Ehanced Move Recognition Algorithm Based on Pre-trained Models
with Positional Embeddings [6.688643243555054]
要約の認識は、コンテンツを効果的に特定し、記事を明確にするために重要である。
本稿では,中国科学・技術論文の非構造的抽象化に対する注意機構を備えた,改良された事前学習モデルとゲートネットワークを備えた新しい動き認識アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-14T03:20:28Z) - DecompEval: Evaluating Generated Texts as Unsupervised Decomposed
Question Answering [95.89707479748161]
自然言語生成タスク(NLG)の既存の評価指標は、一般化能力と解釈可能性の課題に直面している。
本稿では,NLG評価を命令型質問応答タスクとして定式化するDecompEvalというメトリクスを提案する。
本稿では,文の質を測る問合せに,文の質を問う指導スタイルの質問を分解する。
PLMが生成した回答を証拠として再検討し、評価結果を得る。
論文 参考訳(メタデータ) (2023-07-13T16:16:51Z) - A Gold Standard Dataset for the Reviewer Assignment Problem [117.59690218507565]
類似度スコア(Similarity score)とは、論文のレビューにおいて、レビュアーの専門知識を数値で見積もるものである。
私たちのデータセットは、58人の研究者による477の自己申告された専門知識スコアで構成されています。
2つの論文をレビュアーに関連付けるタスクは、簡単なケースでは12%~30%、ハードケースでは36%~43%である。
論文 参考訳(メタデータ) (2023-03-23T16:15:03Z) - Information Retrieval in Friction Stir Welding of Aluminum Alloys by
using Natural Language Processing based Algorithms [0.0]
テキスト要約(Text summarization)は、大きなテキストをいくつかの重要な要素に凝縮し、その内容の一般的な印象を与える技法である。
自然言語処理(NLP)は、人工知能のサブディビジョンであり、技術と人間の認知のギャップを狭める。
論文 参考訳(メタデータ) (2022-04-25T16:36:00Z) - Automatic evaluation of scientific abstracts through natural language
processing [0.0]
本稿では,科学的研究の分類,セグメント化,評価を行う自然言語処理アルゴリズムを提案する。
提案フレームワークは, テキスト分類手法を用いて, 解決すべき課題に応じて, 抽象テキストを分類する。
要約の方法論は、その結果の感情分析に基づいてランク付けされる。
論文 参考訳(メタデータ) (2021-11-14T12:55:29Z) - Hierarchical Bi-Directional Self-Attention Networks for Paper Review
Rating Recommendation [81.55533657694016]
本稿では,階層型双方向自己注意ネットワークフレームワーク(HabNet)を提案する。
具体的には、文エンコーダ(レベル1)、レビュー内エンコーダ(レベル2)、レビュー間エンコーダ(レベル3)の3つのレベルで、論文レビューの階層構造を利用する。
我々は、最終的な受理決定を行う上で有用な予測者を特定することができ、また、数値的なレビュー評価とレビュアーが伝えるテキストの感情の不整合を発見するのに役立てることができる。
論文 参考訳(メタデータ) (2020-11-02T08:07:50Z) - Unsupervised Reference-Free Summary Quality Evaluation via Contrastive
Learning [66.30909748400023]
教師なしコントラスト学習により,参照要約を使わずに要約品質を評価することを提案する。
具体的には、BERTに基づく言語的品質と意味情報の両方をカバーする新しい指標を設計する。
ニューズルームとCNN/デイリーメールの実験では,新たな評価手法が参照サマリーを使わずに他の指標よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-10-05T05:04:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。