論文の概要: Multi-Classification using One-versus-One Deep Learning Strategy with
Joint Probability Estimates
- arxiv url: http://arxiv.org/abs/2306.09668v1
- Date: Fri, 16 Jun 2023 07:54:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-19 14:37:35.399305
- Title: Multi-Classification using One-versus-One Deep Learning Strategy with
Joint Probability Estimates
- Title(参考訳): 共同確率推定を用いた1対1深層学習戦略を用いたマルチクラス化
- Authors: Anthony Hei-Long Chan, Raymond HonFu Chan, Lingjia Dai
- Abstract要約: 提案モデルは他の最先端モデルよりも一般的に高い分類精度が得られる。
異なる応用における数値実験により,提案モデルが他の最先端モデルよりも一般的に高い分類精度を達成できることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The One-versus-One (OvO) strategy is an approach of multi-classification
models which focuses on training binary classifiers between each pair of
classes. While the OvO strategy takes advantage of balanced training data, the
classification accuracy is usually hindered by the voting mechanism to combine
all binary classifiers. In this paper, a novel OvO multi-classification model
incorporating a joint probability measure is proposed under the deep learning
framework. In the proposed model, a two-stage algorithm is developed to
estimate the class probability from the pairwise binary classifiers. Given the
binary classifiers, the pairwise probability estimate is calibrated by a
distance measure on the separating feature hyperplane. From that, the class
probability of the subject is estimated by solving a joint probability-based
distance minimization problem. Numerical experiments in different applications
show that the proposed model achieves generally higher classification accuracy
than other state-of-the-art models.
- Abstract(参考訳): one-versus-one (ovo) 戦略は、各クラス間のバイナリ分類器のトレーニングに焦点を当てたマルチクラス化モデルのアプローチである。
OvO戦略はバランスの取れたトレーニングデータを利用するが、分類精度は通常、全てのバイナリ分類器を組み合わせる投票機構によって妨げられる。
本稿では,共同確率尺度を組み込んだ新しいovo多分類モデルを提案する。
提案モデルでは,2段階のアルゴリズムを用いて,ペア二項分類器からクラス確率を推定する。
バイナリ分類器が与えられた場合、対の確率推定は分離特徴超平面上の距離測定によって校正される。
以上より、確率的距離最小化問題を解くことにより、対象のクラス確率を推定する。
異なる応用における数値実験により,提案モデルは他の最先端モデルよりも一般に高い分類精度が得られることが示された。
関連論文リスト
- Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
細長い分布は、少数の少数派が限られた数のサンプルを含む実世界のデータにしばしば現れる。
近年の研究では、教師付きコントラスト学習がデータ不均衡を緩和する有望な可能性を示していることが明らかになっている。
本稿では,特徴空間の各クラスからのサンプルデータ分布を推定する確率論的コントラスト学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-11T13:44:49Z) - Unified Classification and Rejection: A One-versus-All Framework [47.58109235690227]
我々は,オープンな集合分類器を構築するための統一的なフレームワークを構築した。
K の $-class 問題を $ K $ 1-versus-all (OVA) のバイナリ分類タスクに分解することにより、OVA 分類器のスコアを組み合わせることで、$ (K+1) の $-class rear 確率が得られることを示す。
一般的なOSRおよびOOD検出データセットの実験により、提案するフレームワークは、単一のマルチクラス分類器を使用して、競合性能を得ることを示した。
論文 参考訳(メタデータ) (2023-11-22T12:47:12Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
本稿では,アンサンブル分類とエビデンス理論を用いた新しい検出手法を提案する。
固体アンサンブル分類器を構築するためのプール選択戦略が提示される。
我々は異常検出手法の不確実性を利用する。
論文 参考訳(メタデータ) (2022-12-23T00:50:41Z) - Beyond Adult and COMPAS: Fairness in Multi-Class Prediction [8.405162568925405]
我々は、この問題を、事前訓練された(そして潜在的に不公平な)分類器を、対象のグループフェアネス要件を満たすモデルの集合に「投影する」という観点で定式化する。
投影された分類器を並列化して計算し、サンプルの複雑性と収束保証の両方を導出する反復アルゴリズムを提案する。
また,複数のクラス,複数の交差保護グループ,100万以上のサンプルを持つオープンデータセット上で,本手法を大規模に評価した。
論文 参考訳(メタデータ) (2022-06-15T20:29:33Z) - Ensemble Classifier Design Tuned to Dataset Characteristics for Network
Intrusion Detection [0.0]
データセットのクラスオーバーラップ問題に対処する2つの新しいアルゴリズムが提案されている。
提案手法は二進分類と多進分類の両方で評価される。
論文 参考訳(メタデータ) (2022-05-08T21:06:42Z) - pRSL: Interpretable Multi-label Stacking by Learning Probabilistic Rules [0.0]
本稿では,確率論的命題論理則と信念伝播を用いた確率論的ルールスタックリング(pRSL)を提案し,その基礎となる分類器の予測と組み合わせる。
精度と近似推論と学習のためのアルゴリズムを導出し、様々なベンチマークデータセット上でpRSLが最先端の性能に達することを示す。
論文 参考訳(メタデータ) (2021-05-28T14:06:21Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - SetConv: A New Approach for Learning from Imbalanced Data [29.366843553056594]
集合畳み込み操作とエピソード学習戦略を提案し,各クラスに1つの代表を抽出する。
提案アルゴリズムは入力順序に関わらず置換不変であることを示す。
論文 参考訳(メタデータ) (2021-04-03T22:33:30Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
我々は m 個の U 集合を $mge2$ で二進分類する新しい手法を提案する。
我々のキーとなる考え方は、サロゲート集合分類(SSC)と呼ばれる補助的分類タスクを考えることである。
論文 参考訳(メタデータ) (2021-02-01T07:36:38Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
ディープワンクラス分類のための2段階フレームワークを提案する。
まず,一級データから自己教師付き表現を学習し,学習した表現に基づいて一級分類器を構築する。
実験では、視覚領域の1クラス分類ベンチマークで最先端の性能を示す。
論文 参考訳(メタデータ) (2020-11-04T23:33:41Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。