Semi-Offline Reinforcement Learning for Optimized Text Generation
- URL: http://arxiv.org/abs/2306.09712v1
- Date: Fri, 16 Jun 2023 09:24:29 GMT
- Title: Semi-Offline Reinforcement Learning for Optimized Text Generation
- Authors: Changyu Chen, Xiting Wang, Yiqiao Jin, Victor Ye Dong, Li Dong, Jie
Cao, Yi Liu, Rui Yan
- Abstract summary: In reinforcement learning (RL), there are two major settings for interacting with the environment: online and offline.
Online methods explore the environment at significant time cost, and offline methods efficiently obtain reward signals by sacrificing exploration capability.
We propose semi-offline RL, a novel paradigm that smoothly transits from offline to online settings, balances exploration capability and training cost, and provides a theoretical foundation for comparing different RL settings.
- Score: 35.1606951874979
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In reinforcement learning (RL), there are two major settings for interacting
with the environment: online and offline. Online methods explore the
environment at significant time cost, and offline methods efficiently obtain
reward signals by sacrificing exploration capability. We propose semi-offline
RL, a novel paradigm that smoothly transits from offline to online settings,
balances exploration capability and training cost, and provides a theoretical
foundation for comparing different RL settings. Based on the semi-offline
formulation, we present the RL setting that is optimal in terms of optimization
cost, asymptotic error, and overfitting error bound. Extensive experiments show
that our semi-offline approach is efficient and yields comparable or often
better performance compared with state-of-the-art methods.
Related papers
- A Benchmark Environment for Offline Reinforcement Learning in Racing Games [54.83171948184851]
Offline Reinforcement Learning (ORL) is a promising approach to reduce the high sample complexity of traditional Reinforcement Learning (RL)
This paper introduces OfflineMania, a novel environment for ORL research.
It is inspired by the iconic TrackMania series and developed using the Unity 3D game engine.
arXiv Detail & Related papers (2024-07-12T16:44:03Z) - Preference Elicitation for Offline Reinforcement Learning [59.136381500967744]
We propose Sim-OPRL, an offline preference-based reinforcement learning algorithm.
Our algorithm employs a pessimistic approach for out-of-distribution data, and an optimistic approach for acquiring informative preferences about the optimal policy.
arXiv Detail & Related papers (2024-06-26T15:59:13Z) - The Importance of Online Data: Understanding Preference Fine-tuning via Coverage [25.782644676250115]
We study the similarities and differences between online and offline techniques for preference fine-tuning.
We prove that a global coverage condition is both necessary and sufficient for offline contrastive methods to converge to the optimal policy.
We derive a hybrid preference optimization algorithm that uses offline data for contrastive-based preference optimization and online data for KL regularization.
arXiv Detail & Related papers (2024-06-03T15:51:04Z) - Bridging Distributionally Robust Learning and Offline RL: An Approach to
Mitigate Distribution Shift and Partial Data Coverage [32.578787778183546]
offline reinforcement learning (RL) algorithms learn optimal polices using historical (offline) data.
One of the main challenges in offline RL is the distribution shift.
We propose two offline RL algorithms using the distributionally robust learning (DRL) framework.
arXiv Detail & Related papers (2023-10-27T19:19:30Z) - Train Once, Get a Family: State-Adaptive Balances for Offline-to-Online
Reinforcement Learning [71.02384943570372]
Family Offline-to-Online RL (FamO2O) is a framework that empowers existing algorithms to determine state-adaptive improvement-constraint balances.
FamO2O offers a statistically significant improvement over various existing methods, achieving state-of-the-art performance on the D4RL benchmark.
arXiv Detail & Related papers (2023-10-27T08:30:54Z) - ENOTO: Improving Offline-to-Online Reinforcement Learning with Q-Ensembles [52.34951901588738]
We propose a novel framework called ENsemble-based Offline-To-Online (ENOTO) RL.
By increasing the number of Q-networks, we seamlessly bridge offline pre-training and online fine-tuning without degrading performance.
Experimental results demonstrate that ENOTO can substantially improve the training stability, learning efficiency, and final performance of existing offline RL methods.
arXiv Detail & Related papers (2023-06-12T05:10:10Z) - Reward-agnostic Fine-tuning: Provable Statistical Benefits of Hybrid
Reinforcement Learning [66.43003402281659]
A central question boils down to how to efficiently utilize online data collection to strengthen and complement the offline dataset.
We design a three-stage hybrid RL algorithm that beats the best of both worlds -- pure offline RL and pure online RL.
The proposed algorithm does not require any reward information during data collection.
arXiv Detail & Related papers (2023-05-17T15:17:23Z) - On the Role of Discount Factor in Offline Reinforcement Learning [25.647624787936028]
The discount factor, $gamma$, plays a vital role in improving online RL sample efficiency and estimation accuracy.
This paper examines two distinct effects of $gamma$ in offline RL with theoretical analysis.
The results show that the discount factor plays an essential role in the performance of offline RL algorithms.
arXiv Detail & Related papers (2022-06-07T15:22:42Z) - OptiDICE: Offline Policy Optimization via Stationary Distribution
Correction Estimation [59.469401906712555]
We present an offline reinforcement learning algorithm that prevents overestimation in a more principled way.
Our algorithm, OptiDICE, directly estimates the stationary distribution corrections of the optimal policy.
We show that OptiDICE performs competitively with the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-21T00:43:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.