Fedstellar: A Platform for Decentralized Federated Learning
- URL: http://arxiv.org/abs/2306.09750v4
- Date: Mon, 8 Apr 2024 11:38:11 GMT
- Title: Fedstellar: A Platform for Decentralized Federated Learning
- Authors: Enrique Tomás Martínez Beltrán, Ángel Luis Perales Gómez, Chao Feng, Pedro Miguel Sánchez Sánchez, Sergio López Bernal, Gérôme Bovet, Manuel Gil Pérez, Gregorio Martínez Pérez, Alberto Huertas Celdrán,
- Abstract summary: In 2016, Google proposed Federated Learning (FL) as a novel paradigm to train Machine Learning (ML) models across the participants of a federation.
This paper presents Fedstellar, a platform designed to train FL models in a decentralized, semi-decentralized, and centralized fashion across diverse federations.
- Score: 10.014744081331672
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In 2016, Google proposed Federated Learning (FL) as a novel paradigm to train Machine Learning (ML) models across the participants of a federation while preserving data privacy. Since its birth, Centralized FL (CFL) has been the most used approach, where a central entity aggregates participants' models to create a global one. However, CFL presents limitations such as communication bottlenecks, single point of failure, and reliance on a central server. Decentralized Federated Learning (DFL) addresses these issues by enabling decentralized model aggregation and minimizing dependency on a central entity. Despite these advances, current platforms training DFL models struggle with key issues such as managing heterogeneous federation network topologies. To overcome these challenges, this paper presents Fedstellar, a platform extended from p2pfl library and designed to train FL models in a decentralized, semi-decentralized, and centralized fashion across diverse federations of physical or virtualized devices. The Fedstellar implementation encompasses a web application with an interactive graphical interface, a controller for deploying federations of nodes using physical or virtual devices, and a core deployed on each device which provides the logic needed to train, aggregate, and communicate in the network. The effectiveness of the platform has been demonstrated in two scenarios: a physical deployment involving single-board devices such as Raspberry Pis for detecting cyberattacks, and a virtualized deployment comparing various FL approaches in a controlled environment using MNIST and CIFAR-10 datasets. In both scenarios, Fedstellar demonstrated consistent performance and adaptability, achieving F1 scores of 91%, 98%, and 91.2% using DFL for detecting cyberattacks and classifying MNIST and CIFAR-10, respectively, reducing training time by 32% compared to centralized approaches.
Related papers
- De-VertiFL: A Solution for Decentralized Vertical Federated Learning [7.877130417748362]
This work introduces De-VertiFL, a novel solution for training models in a decentralized VFL setting.
De-VertiFL contributes by introducing a new network architecture distribution, an innovative knowledge exchange scheme, and a distributed federated training process.
The results demonstrate that De-VertiFL generally surpasses state-of-the-art methods in F1-score performance, while maintaining a decentralized and privacy-preserving framework.
arXiv Detail & Related papers (2024-10-08T15:31:10Z) - Towards More Suitable Personalization in Federated Learning via
Decentralized Partial Model Training [67.67045085186797]
Almost all existing systems have to face large communication burdens if the central FL server fails.
It personalizes the "right" in the deep models by alternately updating the shared and personal parameters.
To further promote the shared parameters aggregation process, we propose DFed integrating the local Sharpness Miniization.
arXiv Detail & Related papers (2023-05-24T13:52:18Z) - Hierarchical Personalized Federated Learning Over Massive Mobile Edge
Computing Networks [95.39148209543175]
We propose hierarchical PFL (HPFL), an algorithm for deploying PFL over massive MEC networks.
HPFL combines the objectives of training loss minimization and round latency minimization while jointly determining the optimal bandwidth allocation.
arXiv Detail & Related papers (2023-03-19T06:00:05Z) - Event-Triggered Decentralized Federated Learning over
Resource-Constrained Edge Devices [12.513477328344255]
Federated learning (FL) is a technique for distributed machine learning (ML)
In traditional FL algorithms, trained models at the edge are periodically sent to a central server for aggregation.
We develop a novel methodology for fully decentralized FL, where devices conduct model aggregation via cooperative consensus formation.
arXiv Detail & Related papers (2022-11-23T00:04:05Z) - FedHiSyn: A Hierarchical Synchronous Federated Learning Framework for
Resource and Data Heterogeneity [56.82825745165945]
Federated Learning (FL) enables training a global model without sharing the decentralized raw data stored on multiple devices to protect data privacy.
We propose a hierarchical synchronous FL framework, i.e., FedHiSyn, to tackle the problems of straggler effects and outdated models.
We evaluate the proposed framework based on MNIST, EMNIST, CIFAR10 and CIFAR100 datasets and diverse heterogeneous settings of devices.
arXiv Detail & Related papers (2022-06-21T17:23:06Z) - Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized
Floating Aggregation Point [51.47520726446029]
cooperative edge learning (CE-FL) is a distributed machine learning architecture.
We model the processes taken during CE-FL, and conduct analytical training.
We show the effectiveness of our framework with the data collected from a real-world testbed.
arXiv Detail & Related papers (2022-03-26T00:41:57Z) - DACFL: Dynamic Average Consensus Based Federated Learning in
Decentralized Topology [4.234367850767171]
Federated learning (FL) is a distributed machine learning framework where a central parameter server coordinates many local users to train a globally consistent model.
This paper devises a new DFL implementation coined DACFL, where each user trains its model using its own training data and exchanges the intermediate models with its neighbors.
The DACFL treats the progress of each user's local training as a discrete-time process and employs a first order dynamic average consensus (FODAC) method to track the textitaverage model in the absence of the PS.
arXiv Detail & Related papers (2021-11-10T03:00:40Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
This article breaks down and analyzes the main factors that influence the environmental footprint of distributed learning policies.
It models both vanilla and decentralized FL policies driven by consensus.
Results show that FL allows remarkable end-to-end energy savings (30%-40%) for wireless systems characterized by low bit/Joule efficiency.
arXiv Detail & Related papers (2021-03-18T16:04:42Z) - IPLS : A Framework for Decentralized Federated Learning [6.6271520914941435]
We introduce IPLS, a fully decentralized federated learning framework that is partially based on the interplanetary file system (IPFS)
IPLS scales with the number of participants, is robust against intermittent connectivity and dynamic participant departures/arrivals, requires minimal resources, and guarantees that the accuracy of the trained model quickly converges to that of a centralized FL framework with an accuracy drop of less than one per thousand.
arXiv Detail & Related papers (2021-01-06T07:44:51Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z) - Federated Learning with Cooperating Devices: A Consensus Approach for
Massive IoT Networks [8.456633924613456]
Federated learning (FL) is emerging as a new paradigm to train machine learning models in distributed systems.
The paper proposes a fully distributed (or server-less) learning approach: the proposed FL algorithms leverage the cooperation of devices that perform data operations inside the network.
The approach lays the groundwork for integration of FL within 5G and beyond networks characterized by decentralized connectivity and computing.
arXiv Detail & Related papers (2019-12-27T15:16:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.