On Evolvability and Behavior Landscapes in Neuroevolutionary Divergent
Search
- URL: http://arxiv.org/abs/2306.09849v1
- Date: Fri, 16 Jun 2023 13:46:55 GMT
- Title: On Evolvability and Behavior Landscapes in Neuroevolutionary Divergent
Search
- Authors: Bruno Ga\v{s}perov, Marko {\DJ}urasevi\'c
- Abstract summary: Evolvability refers to the ability of an individual genotype to produce offspring with mutually diverse phenotypes.
Recent research has demonstrated that divergent search methods promote evolvability by implicitly creating selective pressure for it.
This paper provides a novel perspective on the relationship between neuroevolutionary divergent search and evolvability.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evolvability refers to the ability of an individual genotype (solution) to
produce offspring with mutually diverse phenotypes. Recent research has
demonstrated that divergent search methods, particularly novelty search,
promote evolvability by implicitly creating selective pressure for it. The main
objective of this paper is to provide a novel perspective on the relationship
between neuroevolutionary divergent search and evolvability. In order to
achieve this, several types of walks from the literature on fitness landscape
analysis are first adapted to this context. Subsequently, the interplay between
neuroevolutionary divergent search and evolvability under varying amounts of
evolutionary pressure and under different diversity metrics is investigated. To
this end, experiments are performed on Fetch Pick and Place, a robotic arm
task. Moreover, the performed study in particular sheds light on the structure
of the genotype-phenotype mapping (the behavior landscape). Finally, a novel
definition of evolvability that takes into account the evolvability of
offspring and is appropriate for use with discretized behavior spaces is
proposed, together with a Markov-chain-based estimation method for it.
Related papers
- Hierarchical Conditioning of Diffusion Models Using Tree-of-Life for Studying Species Evolution [19.899467048643363]
We introduce Phylo-Diffusion, a framework for conditioning diffusion models with phylogenetic knowledge represented by HIERarchical Embeddings (HIER-Embeds)
We also propose two new experiments for perturbing the embedding space of Phylo-Diffusion: trait masking and trait swapping.
Our work also opens a new chapter of research in evolutionary biology by using generative models to visualize evolutionary changes directly from images.
arXiv Detail & Related papers (2024-07-31T21:06:14Z) - Cognitive Evolutionary Learning to Select Feature Interactions for Recommender Systems [59.117526206317116]
We show that CELL can adaptively evolve into different models for different tasks and data.
Experiments on four real-world datasets demonstrate that CELL significantly outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-05-29T02:35:23Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Coevolution of Neural Architectures and Features for Stock Market
Forecasting: A Multi-objective Decision Perspective [0.0]
This paper proposes a new approach to identify a set of nondominated neural network models for further selection by the decision maker.
A new coevolution approach is proposed to simultaneously select the features and topology of neural networks.
The results on the NASDAQ index in pre and peri COVID time windows convincingly demonstrate that the proposed coevolution approach can evolve a set of nondominated neural forecasting models with better generalization capabilities.
arXiv Detail & Related papers (2023-11-23T15:12:30Z) - Phylogeny-informed fitness estimation [58.720142291102135]
We propose phylogeny-informed fitness estimation, which exploits a population's phylogeny to estimate fitness evaluations.
Our results indicate that phylogeny-informed fitness estimation can mitigate the drawbacks of down-sampled lexicase.
This work serves as an initial step toward improving evolutionary algorithms by exploiting runtime phylogenetic analysis.
arXiv Detail & Related papers (2023-06-06T19:05:01Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - Heritability in Morphological Robot Evolution [2.7402733069181]
We introduce the biological notion of heritability, which captures the amount of phenotypic variation caused by genotypic variation.
In our analysis we measure the heritability on the first generation of robots evolved from two different encodings.
We show how heritability can be a useful tool to better understand the relationship between genotypes and phenotypes.
arXiv Detail & Related papers (2021-10-21T14:58:17Z) - Epigenetic evolution of deep convolutional models [81.21462458089142]
We build upon a previously proposed neuroevolution framework to evolve deep convolutional models.
We propose a convolutional layer layout which allows kernels of different shapes and sizes to coexist within the same layer.
The proposed layout enables the size and shape of individual kernels within a convolutional layer to be evolved with a corresponding new mutation operator.
arXiv Detail & Related papers (2021-04-12T12:45:16Z) - Complexity-based speciation and genotype representation for
neuroevolution [81.21462458089142]
This paper introduces a speciation principle for neuroevolution where evolving networks are grouped into species based on the number of hidden neurons.
The proposed speciation principle is employed in several techniques designed to promote and preserve diversity within species and in the ecosystem as a whole.
arXiv Detail & Related papers (2020-10-11T06:26:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.