Cognitive Evolutionary Learning to Select Feature Interactions for Recommender Systems
- URL: http://arxiv.org/abs/2405.18708v1
- Date: Wed, 29 May 2024 02:35:23 GMT
- Title: Cognitive Evolutionary Learning to Select Feature Interactions for Recommender Systems
- Authors: Runlong Yu, Qixiang Shao, Qi Liu, Huan Liu, Enhong Chen,
- Abstract summary: We show that CELL can adaptively evolve into different models for different tasks and data.
Experiments on four real-world datasets demonstrate that CELL significantly outperforms state-of-the-art baselines.
- Score: 59.117526206317116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feature interaction selection is a fundamental problem in commercial recommender systems. Most approaches equally enumerate all features and interactions by the same pre-defined operation under expert guidance. Their recommendation is unsatisfactory sometimes due to the following issues: (1)~They cannot ensure the learning abilities of models because their architectures are poorly adaptable to tasks and data; (2)~Useless features and interactions can bring unnecessary noise and complicate the training process. In this paper, we aim to adaptively evolve the model to select appropriate operations, features, and interactions under task guidance. Inspired by the evolution and functioning of natural organisms, we propose a novel \textsl{Cognitive EvoLutionary Learning (CELL)} framework, where cognitive ability refers to a property of organisms that allows them to react and survive in diverse environments. It consists of three stages, i.e., DNA search, genome search, and model functioning. Specifically, if we regard the relationship between models and tasks as the relationship between organisms and natural environments, interactions of feature pairs can be analogous to double-stranded DNA, of which relevant features and interactions can be analogous to genomes. Along this line, we diagnose the fitness of the model on operations, features, and interactions to simulate the survival rates of organisms for natural selection. We show that CELL can adaptively evolve into different models for different tasks and data, which enables practitioners to access off-the-shelf models. Extensive experiments on four real-world datasets demonstrate that CELL significantly outperforms state-of-the-art baselines. Also, we conduct synthetic experiments to ascertain that CELL can consistently discover the pre-defined interaction patterns for feature pairs.
Related papers
- Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
We propose a visual-geometric collaborative guided affordance learning network that incorporates visual and geometric cues.
Our method outperforms the representative models regarding objective metrics and visual quality.
arXiv Detail & Related papers (2024-10-15T07:35:51Z) - Integrating GNN and Neural ODEs for Estimating Non-Reciprocal Two-Body Interactions in Mixed-Species Collective Motion [0.0]
We present a novel deep learning framework for estimating the underlying equations of motion from observed trajectories.
Our framework integrates graph neural networks with neural differential equations, enabling effective prediction of two-body interactions.
arXiv Detail & Related papers (2024-05-26T09:47:17Z) - Towards a Unified Transformer-based Framework for Scene Graph Generation
and Human-object Interaction Detection [116.21529970404653]
We introduce SG2HOI+, a unified one-step model based on the Transformer architecture.
Our approach employs two interactive hierarchical Transformers to seamlessly unify the tasks of SGG and HOI detection.
Our approach achieves competitive performance when compared to state-of-the-art HOI methods.
arXiv Detail & Related papers (2023-11-03T07:25:57Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Collective Relational Inference for learning heterogeneous interactions [8.215734914005845]
We propose a novel probabilistic method for relational inference, which possesses two distinctive characteristics compared to existing methods.
We evaluate the proposed methodology across several benchmark datasets and demonstrate that it outperforms existing methods in accurately inferring interaction types.
Overall the proposed model is data-efficient and generalizable to large systems when trained on smaller ones.
arXiv Detail & Related papers (2023-04-30T19:45:04Z) - Learning Anisotropic Interaction Rules from Individual Trajectories in a
Heterogeneous Cellular Population [0.0]
We develop WSINDy for second order IPSs to model the movement of communities of cells.
Our approach learns the interaction rules that govern the dynamics of a heterogeneous population of migrating cells.
We demonstrate the efficiency and proficiency of the method on several test scenarios, motivated by common cell migration experiments.
arXiv Detail & Related papers (2022-04-29T15:00:21Z) - Meta-brain Models: biologically-inspired cognitive agents [0.0]
We propose a computational approach we call meta-brain models.
We will propose combinations of layers composed using specialized types of models.
We will conclude by proposing next steps in the development of this flexible and open-source approach.
arXiv Detail & Related papers (2021-08-31T05:20:53Z) - Memorize, Factorize, or be Na\"ive: Learning Optimal Feature Interaction
Methods for CTR Prediction [29.343267933348372]
We propose a framework called OptInter which finds the most suitable modelling method for each feature interaction.
Our experiments show that OptInter improves the best performed state-of-the-art baseline deep CTR models by up to 2.21%.
arXiv Detail & Related papers (2021-08-03T03:03:34Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.