Hierarchical Conditioning of Diffusion Models Using Tree-of-Life for Studying Species Evolution
- URL: http://arxiv.org/abs/2408.00160v1
- Date: Wed, 31 Jul 2024 21:06:14 GMT
- Title: Hierarchical Conditioning of Diffusion Models Using Tree-of-Life for Studying Species Evolution
- Authors: Mridul Khurana, Arka Daw, M. Maruf, Josef C. Uyeda, Wasila Dahdul, Caleb Charpentier, Yasin Bakış, Henry L. Bart Jr., Paula M. Mabee, Hilmar Lapp, James P. Balhoff, Wei-Lun Chao, Charles Stewart, Tanya Berger-Wolf, Anuj Karpatne,
- Abstract summary: We introduce Phylo-Diffusion, a framework for conditioning diffusion models with phylogenetic knowledge represented by HIERarchical Embeddings (HIER-Embeds)
We also propose two new experiments for perturbing the embedding space of Phylo-Diffusion: trait masking and trait swapping.
Our work also opens a new chapter of research in evolutionary biology by using generative models to visualize evolutionary changes directly from images.
- Score: 19.899467048643363
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A central problem in biology is to understand how organisms evolve and adapt to their environment by acquiring variations in the observable characteristics or traits of species across the tree of life. With the growing availability of large-scale image repositories in biology and recent advances in generative modeling, there is an opportunity to accelerate the discovery of evolutionary traits automatically from images. Toward this goal, we introduce Phylo-Diffusion, a novel framework for conditioning diffusion models with phylogenetic knowledge represented in the form of HIERarchical Embeddings (HIER-Embeds). We also propose two new experiments for perturbing the embedding space of Phylo-Diffusion: trait masking and trait swapping, inspired by counterpart experiments of gene knockout and gene editing/swapping. Our work represents a novel methodological advance in generative modeling to structure the embedding space of diffusion models using tree-based knowledge. Our work also opens a new chapter of research in evolutionary biology by using generative models to visualize evolutionary changes directly from images. We empirically demonstrate the usefulness of Phylo-Diffusion in capturing meaningful trait variations for fishes and birds, revealing novel insights about the biological mechanisms of their evolution.
Related papers
- Revealing Subtle Phenotypes in Small Microscopy Datasets Using Latent Diffusion Models [0.815557531820863]
We propose a novel approach that leverages pre-trained latent diffusion models to uncover subtle phenotypic changes.
Our findings reveal that our approach enables effective detection of phenotypic variations, capturing both visually apparent and imperceptible differences.
arXiv Detail & Related papers (2025-02-12T15:45:19Z) - G2PDiffusion: Genotype-to-Phenotype Prediction with Diffusion Models [108.94237816552024]
This paper introduces G2PDiffusion, the first-of-its-kind diffusion model designed for genotype-to-phenotype generation across multiple species.
We use images to represent morphological phenotypes across species and redefine phenotype prediction as conditional image generation.
arXiv Detail & Related papers (2025-02-07T06:16:31Z) - PhyloGen: Language Model-Enhanced Phylogenetic Inference via Graph Structure Generation [50.80441546742053]
Phylogenetic trees elucidate evolutionary relationships among species.
Traditional Markov Chain Monte Carlo methods face slow convergence and computational burdens.
We propose PhyloGen, a novel method leveraging a pre-trained genomic language model.
arXiv Detail & Related papers (2024-12-25T08:33:05Z) - Evolutionary Dispersal of Ecological Species via Multi-Agent Deep Reinforcement Learning [0.0]
This study uses multi-agent reinforcement learning (MARL) with deep Q-networks (DQN) to simulate single species and predator-prey interactions.
Our simulations reveal evolutionary dispersal strategies, providing insights into species dispersal mechanisms and validating traditional mathematical models.
arXiv Detail & Related papers (2024-10-24T10:21:23Z) - Neural Echos: Depthwise Convolutional Filters Replicate Biological
Receptive Fields [56.69755544814834]
We present evidence suggesting that depthwise convolutional kernels are effectively replicating the biological receptive fields observed in the mammalian retina.
We propose a scheme that draws inspiration from the biological receptive fields.
arXiv Detail & Related papers (2024-01-18T18:06:22Z) - PhenDiff: Revealing Subtle Phenotypes with Diffusion Models in Real Images [0.7329200485567825]
PhenDiff identifies shifts in cellular phenotypes by translating a real image from one condition to another.
We qualitatively and quantitatively validate this method on cases where the phenotypic changes are visible or invisible, such as in low concentrations of drug treatments.
arXiv Detail & Related papers (2023-12-13T17:06:33Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - Discovering Novel Biological Traits From Images Using Phylogeny-Guided
Neural Networks [10.372001949268636]
We present a novel approach for discovering evolutionary traits directly from images without relying on trait labels.
Our proposed approach, Phylo-NN, encodes the image of an organism into a sequence of quantized feature vectors.
We demonstrate the effectiveness of our approach in producing biologically meaningful results in a number of downstream tasks.
arXiv Detail & Related papers (2023-06-05T20:22:05Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - Epigenetic evolution of deep convolutional models [81.21462458089142]
We build upon a previously proposed neuroevolution framework to evolve deep convolutional models.
We propose a convolutional layer layout which allows kernels of different shapes and sizes to coexist within the same layer.
The proposed layout enables the size and shape of individual kernels within a convolutional layer to be evolved with a corresponding new mutation operator.
arXiv Detail & Related papers (2021-04-12T12:45:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.