Hierarchical Conditioning of Diffusion Models Using Tree-of-Life for Studying Species Evolution
- URL: http://arxiv.org/abs/2408.00160v1
- Date: Wed, 31 Jul 2024 21:06:14 GMT
- Title: Hierarchical Conditioning of Diffusion Models Using Tree-of-Life for Studying Species Evolution
- Authors: Mridul Khurana, Arka Daw, M. Maruf, Josef C. Uyeda, Wasila Dahdul, Caleb Charpentier, Yasin Bakış, Henry L. Bart Jr., Paula M. Mabee, Hilmar Lapp, James P. Balhoff, Wei-Lun Chao, Charles Stewart, Tanya Berger-Wolf, Anuj Karpatne,
- Abstract summary: We introduce Phylo-Diffusion, a framework for conditioning diffusion models with phylogenetic knowledge represented by HIERarchical Embeddings (HIER-Embeds)
We also propose two new experiments for perturbing the embedding space of Phylo-Diffusion: trait masking and trait swapping.
Our work also opens a new chapter of research in evolutionary biology by using generative models to visualize evolutionary changes directly from images.
- Score: 19.899467048643363
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A central problem in biology is to understand how organisms evolve and adapt to their environment by acquiring variations in the observable characteristics or traits of species across the tree of life. With the growing availability of large-scale image repositories in biology and recent advances in generative modeling, there is an opportunity to accelerate the discovery of evolutionary traits automatically from images. Toward this goal, we introduce Phylo-Diffusion, a novel framework for conditioning diffusion models with phylogenetic knowledge represented in the form of HIERarchical Embeddings (HIER-Embeds). We also propose two new experiments for perturbing the embedding space of Phylo-Diffusion: trait masking and trait swapping, inspired by counterpart experiments of gene knockout and gene editing/swapping. Our work represents a novel methodological advance in generative modeling to structure the embedding space of diffusion models using tree-based knowledge. Our work also opens a new chapter of research in evolutionary biology by using generative models to visualize evolutionary changes directly from images. We empirically demonstrate the usefulness of Phylo-Diffusion in capturing meaningful trait variations for fishes and birds, revealing novel insights about the biological mechanisms of their evolution.
Related papers
- Evolutionary Dispersal of Ecological Species via Multi-Agent Deep Reinforcement Learning [0.0]
This study uses multi-agent reinforcement learning (MARL) with deep Q-networks (DQN) to simulate single species and predator-prey interactions.
Our simulations reveal evolutionary dispersal strategies, providing insights into species dispersal mechanisms and validating traditional mathematical models.
arXiv Detail & Related papers (2024-10-24T10:21:23Z) - Neural Echos: Depthwise Convolutional Filters Replicate Biological
Receptive Fields [56.69755544814834]
We present evidence suggesting that depthwise convolutional kernels are effectively replicating the biological receptive fields observed in the mammalian retina.
We propose a scheme that draws inspiration from the biological receptive fields.
arXiv Detail & Related papers (2024-01-18T18:06:22Z) - PhenDiff: Revealing Subtle Phenotypes with Diffusion Models in Real Images [0.7329200485567825]
PhenDiff identifies shifts in cellular phenotypes by translating a real image from one condition to another.
We qualitatively and quantitatively validate this method on cases where the phenotypic changes are visible or invisible, such as in low concentrations of drug treatments.
arXiv Detail & Related papers (2023-12-13T17:06:33Z) - PhyloGFN: Phylogenetic inference with generative flow networks [57.104166650526416]
We introduce the framework of generative flow networks (GFlowNets) to tackle two core problems in phylogenetics: parsimony-based and phylogenetic inference.
Because GFlowNets are well-suited for sampling complex structures, they are a natural choice for exploring and sampling from the multimodal posterior distribution over tree topologies.
We demonstrate that our amortized posterior sampler, PhyloGFN, produces diverse and high-quality evolutionary hypotheses on real benchmark datasets.
arXiv Detail & Related papers (2023-10-12T23:46:08Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - Discovering Novel Biological Traits From Images Using Phylogeny-Guided
Neural Networks [10.372001949268636]
We present a novel approach for discovering evolutionary traits directly from images without relying on trait labels.
Our proposed approach, Phylo-NN, encodes the image of an organism into a sequence of quantized feature vectors.
We demonstrate the effectiveness of our approach in producing biologically meaningful results in a number of downstream tasks.
arXiv Detail & Related papers (2023-06-05T20:22:05Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - Epigenetic opportunities for Evolutionary Computation [0.0]
Evolutionary Computation is a group of biologically inspired algorithms used to solve complex optimisation problems.
It can be split into Evolutionary Algorithms, which take inspiration from genetic inheritance, and Swarm Intelligence algorithms, that take inspiration from cultural inheritance.
This paper breaks down successful bio-inspired algorithms under a contemporary biological framework based on the Extended Evolutionary Synthesis.
arXiv Detail & Related papers (2021-08-10T09:44:53Z) - Epigenetic evolution of deep convolutional models [81.21462458089142]
We build upon a previously proposed neuroevolution framework to evolve deep convolutional models.
We propose a convolutional layer layout which allows kernels of different shapes and sizes to coexist within the same layer.
The proposed layout enables the size and shape of individual kernels within a convolutional layer to be evolved with a corresponding new mutation operator.
arXiv Detail & Related papers (2021-04-12T12:45:16Z) - Embodied Intelligence via Learning and Evolution [92.26791530545479]
We show that environmental complexity fosters the evolution of morphological intelligence.
We also show that evolution rapidly selects morphologies that learn faster.
Our experiments suggest a mechanistic basis for both the Baldwin effect and the emergence of morphological intelligence.
arXiv Detail & Related papers (2021-02-03T18:58:31Z) - Evolution Is All You Need: Phylogenetic Augmentation for Contrastive
Learning [1.7188280334580197]
Self-supervised representation learning of biological sequence embeddings alleviates computational resource constraints on downstream tasks.
We show that contrastive learning using evolutionary phylogenetic augmentation can be used as a representation learning objective.
arXiv Detail & Related papers (2020-12-25T01:35:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.