Investigating Prompting Techniques for Zero- and Few-Shot Visual
Question Answering
- URL: http://arxiv.org/abs/2306.09996v2
- Date: Tue, 9 Jan 2024 21:51:04 GMT
- Title: Investigating Prompting Techniques for Zero- and Few-Shot Visual
Question Answering
- Authors: Rabiul Awal, Le Zhang, Aishwarya Agrawal
- Abstract summary: In this paper, we explore effective prompting techniques to enhance zero- and few-shot Visual Question Answering (VQA) performance.
We identify that specific templates significantly influence VQA outcomes, underscoring the need for strategic template selection.
To mitigate the challenges associated with evaluating free-form open-ended VQA responses, we introduce a straightforward LLM-guided pre-processing technique.
- Score: 7.640416680391081
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we explore effective prompting techniques to enhance zero- and
few-shot Visual Question Answering (VQA) performance in contemporary
Vision-Language Models (VLMs). Central to our investigation is the role of
question templates in guiding VLMs to generate accurate answers. We identify
that specific templates significantly influence VQA outcomes, underscoring the
need for strategic template selection. Another pivotal aspect of our study is
augmenting VLMs with image captions, providing them with additional visual cues
alongside direct image features in VQA tasks. Surprisingly, this augmentation
significantly improves the VLMs' performance in many cases, even though VLMs
"see" the image directly! We explore chain-of-thought (CoT) reasoning and find
that while standard CoT reasoning causes drops in performance, advanced methods
like self-consistency can help recover it. Furthermore, we find that text-only
few-shot examples enhance VLMs' alignment with the task format, particularly
benefiting models prone to verbose zero-shot answers. Lastly, to mitigate the
challenges associated with evaluating free-form open-ended VQA responses using
string-matching based VQA metrics, we introduce a straightforward LLM-guided
pre-processing technique to adapt the model responses to the expected
ground-truth answer distribution. In summary, our research sheds light on the
intricacies of prompting strategies in VLMs for VQA, emphasizing the
synergistic use of captions, templates, and pre-processing to enhance model
efficacy.
Related papers
- Trust but Verify: Programmatic VLM Evaluation in the Wild [62.14071929143684]
Programmatic VLM Evaluation (PROVE) is a new benchmarking paradigm for evaluating VLM responses to open-ended queries.
We benchmark the helpfulness-truthfulness trade-offs of a range ofVLMs on PROVE, finding that very few are in-fact able to achieve a good balance between the two.
arXiv Detail & Related papers (2024-10-17T01:19:18Z) - RAVEN: Multitask Retrieval Augmented Vision-Language Learning [5.1583788731239455]
The scaling of large language models to encode all the world's knowledge is unsustainable and has exacerbated resource barriers.
Retrieval-Augmented Generation (RAG) presents a potential solution, yet its application to vision-language models (VLMs) is under explored.
This paper introduces RAVEN, a retrieval augmented VLM framework that enhances base VLMs through efficient, task specific fine-tuning.
arXiv Detail & Related papers (2024-06-27T13:08:35Z) - Losing Visual Needles in Image Haystacks: Vision Language Models are Easily Distracted in Short and Long Contexts [65.04791072532106]
We present LoCoVQA, a benchmark generator for evaluating long-context extractive reasoning in vision language models (VLMs)
LoCoVQA augments test examples for mathematical reasoning, VQA, and character recognition tasks with increasingly long visual contexts.
This test assesses how well VLMs can ignore irrelevant information when answering queries.
arXiv Detail & Related papers (2024-06-24T17:58:03Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - Filling the Image Information Gap for VQA: Prompting Large Language
Models to Proactively Ask Questions [15.262736501208467]
Large Language Models (LLMs) demonstrate impressive reasoning ability and the maintenance of world knowledge.
As images are invisible to LLMs, researchers convert images to text to engage LLMs into the visual question reasoning procedure.
We design a framework that enables LLMs to proactively ask relevant questions to unveil more details in the image.
arXiv Detail & Related papers (2023-11-20T08:23:39Z) - Rephrase, Augment, Reason: Visual Grounding of Questions for Vision-Language Models [59.05769810380928]
Rephrase, Augment and Reason (RepARe) is a gradient-free framework that extracts salient details about the image using the underlying vision-language model.
We show that RepARe can result in a 3.85% (absolute) increase in zero-shot accuracy on VQAv2, 6.41%, and 7.94% points increase on A-OKVQA, and VizWiz respectively.
arXiv Detail & Related papers (2023-10-09T16:57:57Z) - From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language
Models [111.42052290293965]
Large language models (LLMs) have demonstrated excellent zero-shot generalization to new language tasks.
End-to-end training on vision and language data may bridge the disconnections, but is inflexible and computationally expensive.
We propose emphImg2Prompt, a plug-and-play module that provides the prompts that can bridge the aforementioned modality and task disconnections.
arXiv Detail & Related papers (2022-12-21T08:39:36Z) - Analysis on Image Set Visual Question Answering [0.3359875577705538]
We tackle the challenge of Visual Question Answering in multi-image setting.
Traditional VQA tasks have focused on a single-image setting where the target answer is generated from a single image.
In this report, we work with 4 approaches in a bid to improve the performance on the task.
arXiv Detail & Related papers (2021-03-31T20:47:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.