論文の概要: CLIP2Protect: Protecting Facial Privacy using Text-Guided Makeup via
Adversarial Latent Search
- arxiv url: http://arxiv.org/abs/2306.10008v2
- Date: Tue, 20 Jun 2023 17:33:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 11:19:02.495107
- Title: CLIP2Protect: Protecting Facial Privacy using Text-Guided Makeup via
Adversarial Latent Search
- Title(参考訳): clip2protect: テキスト誘導メイクによる顔のプライバシー保護
- Authors: Fahad Shamshad, Muzammal Naseer, Karthik Nandakumar
- Abstract要約: ディープラーニングベースの顔認識システムは、デジタル世界のユーザを無許可で追跡することができる。
既存のプライバシーを強化する方法は、ユーザー体験を損なうことなく、顔のプライバシーを保護することができる自然主義的なイメージを生成するのに失敗する。
本稿では,事前学習された生成モデルの低次元多様体における逆潜時符号の発見に依存する,顔のプライバシー保護のための新しい2段階のアプローチを提案する。
- 参考スコア(独自算出の注目度): 10.16904417057085
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The success of deep learning based face recognition systems has given rise to
serious privacy concerns due to their ability to enable unauthorized tracking
of users in the digital world. Existing methods for enhancing privacy fail to
generate naturalistic images that can protect facial privacy without
compromising user experience. We propose a novel two-step approach for facial
privacy protection that relies on finding adversarial latent codes in the
low-dimensional manifold of a pretrained generative model. The first step
inverts the given face image into the latent space and finetunes the generative
model to achieve an accurate reconstruction of the given image from its latent
code. This step produces a good initialization, aiding the generation of
high-quality faces that resemble the given identity. Subsequently, user-defined
makeup text prompts and identity-preserving regularization are used to guide
the search for adversarial codes in the latent space. Extensive experiments
demonstrate that faces generated by our approach have stronger black-box
transferability with an absolute gain of 12.06% over the state-of-the-art
facial privacy protection approach under the face verification task. Finally,
we demonstrate the effectiveness of the proposed approach for commercial face
recognition systems. Our code is available at
https://github.com/fahadshamshad/Clip2Protect.
- Abstract(参考訳): ディープラーニングベースの顔認識システムの成功は、デジタル世界でのユーザを不正に追跡する機能によって、深刻なプライバシー上の懸念を引き起こしている。
既存のプライバシー強化方法は、ユーザー体験を損なうことなく、顔のプライバシーを保護することができる自然なイメージを生成することができない。
本稿では,事前学習された生成モデルの低次元多様体における逆潜時符号の発見に依存する,顔のプライバシー保護のための新しい2段階のアプローチを提案する。
第1ステップは、与えられた顔画像を潜在空間に反転させ、生成モデルを微調整し、その潜在コードから与えられた画像を正確に再構成する。
このステップは、与えられたアイデンティティに似た高品質な顔の生成を支援する優れた初期化を生成する。
その後、ユーザ定義のメイクアップテキストプロンプトとID保存正規化を使用して、潜伏空間における敵コード検索をガイドする。
広範な実験により,顔認証タスクにおける顔プライバシー保護アプローチの絶対値が12.06%と,ブラックボックス転送性が強くなることが示された。
最後に,商用顔認識システムにおける提案手法の有効性を示す。
私たちのコードはhttps://github.com/fahadshamshad/clip2protectで利用可能です。
関連論文リスト
- Transferable Adversarial Facial Images for Privacy Protection [15.211743719312613]
視覚的品質を維持しつつ、転送性を改善した新しい顔プライバシー保護方式を提案する。
生成モデルの潜在空間をトラバースするために,まずグローバルな逆潜時探索を利用する。
次に、視覚的アイデンティティ情報を保存するための重要なランドマーク正規化モジュールを導入する。
論文 参考訳(メタデータ) (2024-07-18T02:16:11Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
この脆弱性を解決するために,ハードウェアレベルの顔識別手法を提案する。
また、プライバシ保存画像、フェイスヒートマップ、およびパブリックデータセットからの参照顔イメージを入力として、新しい顔を生成する匿名化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-31T19:28:04Z) - Privacy-Preserving Face Recognition Using Trainable Feature Subtraction [40.47645421424354]
顔認識はプライバシーの懸念を増している。
本稿では,視覚障害と回復障害に対する顔画像保護について検討する。
我々は,この手法を新たなプライバシ保護顔認識手法であるMinusFaceに精錬する。
論文 参考訳(メタデータ) (2024-03-19T05:27:52Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - PRO-Face S: Privacy-preserving Reversible Obfuscation of Face Images via
Secure Flow [69.78820726573935]
保護フローベースモデルを用いて,プライバシ保護による顔画像の可逆難読化(Reversible Obfuscation of Face image)を略してpro-Face Sと命名する。
本フレームワークでは、Invertible Neural Network(INN)を使用して、入力画像と、その事前難読化されたフォームとを処理し、事前難読化された画像と視覚的に近似したプライバシー保護された画像を生成する。
論文 参考訳(メタデータ) (2023-07-18T10:55:54Z) - Privacy-preserving Adversarial Facial Features [31.885215405010687]
本稿では, 顔のプライバシ保護に配慮した顔のプライバシー保護手法を提案する。
我々は,AdvFaceが再建攻撃に対する防御において,最先端のプライバシー保護手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-08T08:52:08Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
本稿では,事前学習したGANの潜時空間における画像の潜時表現を直接最適化するタスク非依存匿名化手法を提案する。
我々は一連の実験を通して、我々の手法が画像の同一性を匿名化できる一方で、顔の属性をより保存できることを実証した。
論文 参考訳(メタデータ) (2023-03-20T17:34:05Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
我々は、新しいタイプのカスタマイズクロークに基づく技術の観点から、顔のプライバシ保護について検討する。
本研究では,個人固有の(クラスワイドな)ユニバーサルマスクを生成するために,1人1マスク(OPOM)という新しい手法を提案する。
提案手法の有効性を,共通データセットと有名データセットの両方で評価した。
論文 参考訳(メタデータ) (2022-05-24T11:29:37Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。