論文の概要: Stacking of Hyperparameter Tuned Models for Tagging Coding Problems
- arxiv url: http://arxiv.org/abs/2306.10077v2
- Date: Thu, 6 Jul 2023 10:03:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-07 17:11:41.689852
- Title: Stacking of Hyperparameter Tuned Models for Tagging Coding Problems
- Title(参考訳): タッグ符号化問題に対するハイパーパラメータ調整モデルの重ね合わせ
- Authors: Sathya Krishnan TS, S. Lakshmana Pandian and P. Shunmugapriya
- Abstract要約: コーディングの問題は、学生やプロの間で人気があり、彼らのスキルとキャリアの機会を高める。
コーディング問題を実践する人たちを助けるAIシステムは、非常に有用であり、そのようなシステムには大きな可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coding problems are problems that require a solution in the form of a
computer program. Coding problems are popular among students and professionals
as it enhances their skills and career opportunities. An AI system that would
help those who practice coding problems would be highly useful and there is a
huge potential for such a system. In this work, we propose a model which uses
stacking of hyperparameter tuned boosting models to achieve impressive metric
scores of 77.8% accuracy and 0.815 PR-AUC on the dataset that was scraped from
Codeforces and Leetcode. We open source the dataset and the models developed
for this work.
- Abstract(参考訳): 符号化問題は、コンピュータプログラムの形で解を必要とする問題である。
コーディングの問題は、学生やプロの間で人気があり、スキルやキャリアの機会を高める。
コーディング問題を実践する人たちを助けるAIシステムは、非常に有用であり、そのようなシステムには大きな可能性がある。
本研究では,ハイパーパラメータの積み重ねによって77.8%の精度と0.815pr-aucの印象的なメトリックスコアを,codeforcesとleetcodeから抽出したデータセット上で達成するモデルを提案する。
この作業のために開発されたデータセットとモデルをオープンソースにしています。
関連論文リスト
- SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning [110.80663974060624]
キーポイント駆動型データ合成(KPDDS)は質問応答対を合成する新しいデータ合成フレームワークである。
KPDDSは厳格な品質管理と相当なスケーラビリティを備えた新しい質問の生成を保証する。
KPMathは,800万以上の質問応答対から構成される,数学的推論に適した広範囲な合成データセットである。
論文 参考訳(メタデータ) (2024-03-04T18:58:30Z) - DeepCode AI Fix: Fixing Security Vulnerabilities with Large Language
Models [3.1690235522182104]
大規模言語モデル(LLM)は、様々なプログラミングタスクの解決にますます使われている。
長距離コード関係を学習するモデルを必要とするため,タスクは困難であることを示す。
本稿では,LLMのクエリと微調整のための新しいアプローチにより,これらの課題に対処する手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T18:35:40Z) - MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical
Reasoning [52.97768001837269]
本稿では,オープンソース言語モデルを微調整する手法を提案する。
本稿では,問題のある新しい,高品質なデータセットを生成する手法とそのコードベースソリューションを提案する。
このアプローチは、問題の解決にコードベースのソリューションを生成することができるモデルのファミリーであるMathCoderモデルを生成する。
論文 参考訳(メタデータ) (2023-10-05T17:52:09Z) - SoTaNa: The Open-Source Software Development Assistant [81.86136560157266]
SoTaNaはオープンソースのソフトウェア開発アシスタントだ。
ソフトウェア工学の分野のための高品質な命令ベースのデータを生成する。
オープンソースの基盤モデルであるLLaMAを強化するためにパラメータ効率のよい微調整アプローチを採用している。
論文 参考訳(メタデータ) (2023-08-25T14:56:21Z) - Explainable AI for Pre-Trained Code Models: What Do They Learn? When
They Do Not Work? [4.573310303307945]
下流タスクの一連のソフトウェアエンジニアリング上のコードのための,最近の2つの大規模言語モデル (LLM) について検討する。
CodeBERTとGraphCodeBERTは、これらのタスクで何を学ぶか(ソースコードトークンタイプに関して、最も注意を払っている)を特定します。
モデルが期待通りに機能しない場合の一般的なパターンをいくつか示し、推奨する。
論文 参考訳(メタデータ) (2022-11-23T10:07:20Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z) - Measuring Coding Challenge Competence With APPS [54.22600767666257]
コード生成のベンチマークであるAPPSを紹介する。
私たちのベンチマークには1万の問題が含まれています。
GPT-Neoのような最近のモデルでは、導入問題のテストケースの約15%をパスできる。
論文 参考訳(メタデータ) (2021-05-20T17:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。