MultiWave: Multiresolution Deep Architectures through Wavelet
Decomposition for Multivariate Time Series Prediction
- URL: http://arxiv.org/abs/2306.10164v1
- Date: Fri, 16 Jun 2023 20:07:15 GMT
- Title: MultiWave: Multiresolution Deep Architectures through Wavelet
Decomposition for Multivariate Time Series Prediction
- Authors: Iman Deznabi, Madalina Fiterau
- Abstract summary: MultiWave is a novel framework that enhances deep learning time series models by incorporating components that operate at the intrinsic frequencies of signals.
We show that MultiWave consistently identifies critical features and their frequency components, thus providing valuable insights into the applications studied.
- Score: 6.980076213134384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The analysis of multivariate time series data is challenging due to the
various frequencies of signal changes that can occur over both short and long
terms. Furthermore, standard deep learning models are often unsuitable for such
datasets, as signals are typically sampled at different rates. To address these
issues, we introduce MultiWave, a novel framework that enhances deep learning
time series models by incorporating components that operate at the intrinsic
frequencies of signals. MultiWave uses wavelets to decompose each signal into
subsignals of varying frequencies and groups them into frequency bands. Each
frequency band is handled by a different component of our model. A gating
mechanism combines the output of the components to produce sparse models that
use only specific signals at specific frequencies. Our experiments demonstrate
that MultiWave accurately identifies informative frequency bands and improves
the performance of various deep learning models, including LSTM, Transformer,
and CNN-based models, for a wide range of applications. It attains top
performance in stress and affect detection from wearables. It also increases
the AUC of the best-performing model by 5% for in-hospital COVID-19 mortality
prediction from patient blood samples and for human activity recognition from
accelerometer and gyroscope data. We show that MultiWave consistently
identifies critical features and their frequency components, thus providing
valuable insights into the applications studied.
Related papers
- PeriodWave: Multi-Period Flow Matching for High-Fidelity Waveform Generation [37.35829410807451]
We propose PeriodWave, a novel universal waveform generation model.
We introduce a period-aware flow matching estimator that can capture the periodic features of the waveform signal.
We also propose a single period-conditional universal estimator that can feed-forward parallel by period-wise batch inference.
arXiv Detail & Related papers (2024-08-14T13:36:17Z) - Frequency Guidance Matters: Skeletal Action Recognition by Frequency-Aware Mixed Transformer [18.459822172890473]
We introduce a frequency-aware attention module to unweave skeleton frequency representations.
We also develop a mixed transformer architecture to incorporate spatial features with frequency features.
Experiments show that FreqMiXFormer outperforms SOTA on 3 popular skeleton recognition datasets.
arXiv Detail & Related papers (2024-07-17T05:47:27Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
Time series data is characterized by its intrinsic long and short-range dependencies.
We introduce a novel Time Series Lightweight Network (TSLANet) as a universal convolutional model for diverse time series tasks.
Our experiments demonstrate that TSLANet outperforms state-of-the-art models in various tasks spanning classification, forecasting, and anomaly detection.
arXiv Detail & Related papers (2024-04-12T13:41:29Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Frequency-Aware Masked Autoencoders for Multimodal Pretraining on Biosignals [7.381259294661687]
We propose a frequency-aware masked autoencoder that learns to parameterize the representation of biosignals in the frequency space.
The resulting architecture effectively utilizes multimodal information during pretraining, and can be seamlessly adapted to diverse tasks and modalities at test time.
arXiv Detail & Related papers (2023-09-12T02:59:26Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Adaptive Frequency Learning in Two-branch Face Forgery Detection [66.91715092251258]
We propose Adaptively learn Frequency information in the two-branch Detection framework, dubbed AFD.
We liberate our network from the fixed frequency transforms, and achieve better performance with our data- and task-dependent transform layers.
arXiv Detail & Related papers (2022-03-27T14:25:52Z) - Pattern Recognition in Vital Signs Using Spectrograms [2.8135053988182515]
We propose a novel solution to introduce frequency variability using frequency modulation on vital signs.
The proposed approach has been evaluated on 4 different medical datasets across both prediction and classification tasks.
arXiv Detail & Related papers (2021-08-05T01:37:45Z) - Wavelet-Based Network For High Dynamic Range Imaging [64.66969585951207]
Existing methods, such as optical flow based and end-to-end deep learning based solutions, are error-prone either in detail restoration or ghosting artifacts removal.
In this work, we propose a novel frequency-guided end-to-end deep neural network (FNet) to conduct HDR fusion in the frequency domain, and Wavelet Transform (DWT) is used to decompose inputs into different frequency bands.
The low-frequency signals are used to avoid specific ghosting artifacts, while the high-frequency signals are used for preserving details.
arXiv Detail & Related papers (2021-08-03T12:26:33Z) - WaveTransform: Crafting Adversarial Examples via Input Decomposition [69.01794414018603]
We introduce WaveTransform', that creates adversarial noise corresponding to low-frequency and high-frequency subbands, separately (or in combination)
Experiments show that the proposed attack is effective against the defense algorithm and is also transferable across CNNs.
arXiv Detail & Related papers (2020-10-29T17:16:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.