ReFocus: Reinforcing Mid-Frequency and Key-Frequency Modeling for Multivariate Time Series Forecasting
- URL: http://arxiv.org/abs/2502.16890v2
- Date: Mon, 03 Mar 2025 08:58:48 GMT
- Title: ReFocus: Reinforcing Mid-Frequency and Key-Frequency Modeling for Multivariate Time Series Forecasting
- Authors: Guoqi Yu, Yaoming Li, Juncheng Wang, Xiaoyu Guo, Angelica I. Aviles-Rivero, Tong Yang, Shujun Wang,
- Abstract summary: This work introduces a novel Adaptive Mid-Frequency Energy, based on convolution and residual learning, to emphasize the significance of mid-frequency bands.<n>A novel Key-Frequency Enhanced Training strategy is employed to further enhance Key-Frequency modeling, where spectral information from other channels is randomly introduced into each channel.<n>Our approach advanced multivariate time series forecasting on the challenging Traffic, ECL, and Solar benchmarks, reducing MSE by 4%, 6%, and 5% compared to the previous SOTA iTransformer.
- Score: 12.604476544895762
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements have progressively incorporated frequency-based techniques into deep learning models, leading to notable improvements in accuracy and efficiency for time series analysis tasks. However, the Mid-Frequency Spectrum Gap in the real-world time series, where the energy is concentrated at the low-frequency region while the middle-frequency band is negligible, hinders the ability of existing deep learning models to extract the crucial frequency information. Additionally, the shared Key-Frequency in multivariate time series, where different time series share indistinguishable frequency patterns, is rarely exploited by existing literature. This work introduces a novel module, Adaptive Mid-Frequency Energy Optimizer, based on convolution and residual learning, to emphasize the significance of mid-frequency bands. We also propose an Energy-based Key-Frequency Picking Block to capture shared Key-Frequency, which achieves superior inter-series modeling performance with fewer parameters. A novel Key-Frequency Enhanced Training strategy is employed to further enhance Key-Frequency modeling, where spectral information from other channels is randomly introduced into each channel. Our approach advanced multivariate time series forecasting on the challenging Traffic, ECL, and Solar benchmarks, reducing MSE by 4%, 6%, and 5% compared to the previous SOTA iTransformer. Code is available at this GitHub Repository: https://github.com/Levi-Ackman/ReFocus.
Related papers
- MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
Time series predictability is derived from periodic characteristics at different frequencies.
We propose a novel time series forecasting method based on multi-frequency reference series correlation analysis.
Experiments on major open and synthetic datasets show state-of-the-art performance.
arXiv Detail & Related papers (2025-03-11T11:40:14Z) - General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data [61.163542597764796]
We show that time series with different time granularities (or corresponding frequency resolutions) exhibit distinct joint distributions in the frequency domain.<n>A novel Fourier knowledge attention mechanism is proposed to enable learning time-aware representations from both the temporal and frequency domains.<n>An autoregressive blank infilling pre-training framework is incorporated to time series analysis for the first time, leading to a generative tasks agnostic pre-training strategy.
arXiv Detail & Related papers (2025-02-05T15:20:04Z) - FreqMoE: Enhancing Time Series Forecasting through Frequency Decomposition Mixture of Experts [14.01018670507771]
We propose the Frequency Decomposition Mixture-of-Experts (FreqMoE) model, which decomposes time series data into frequency bands.
A gating mechanism adjusts the importance of each output of expert based on frequency characteristics.
Experiments demonstrate that FreqMoE outperforms state-of-the-art models.
arXiv Detail & Related papers (2025-01-25T08:25:52Z) - Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization [74.3339999119713]
We develop a wavelet-based tokenizer that allows models to learn complex representations directly in the space of time-localized frequencies.<n>Our method first scales and decomposes the input time series, then thresholds and quantizes the wavelet coefficients, and finally pre-trains an autoregressive model to forecast coefficients for the forecast horizon.
arXiv Detail & Related papers (2024-12-06T18:22:59Z) - FlowTS: Time Series Generation via Rectified Flow [67.41208519939626]
FlowTS is an ODE-based model that leverages rectified flow with straight-line transport in probability space.<n>For unconditional setting, FlowTS achieves state-of-the-art performance, with context FID scores of 0.019 and 0.011 on Stock and ETTh datasets.<n>For conditional setting, we have achieved superior performance in solar forecasting.
arXiv Detail & Related papers (2024-11-12T03:03:23Z) - FLEXtime: Filterbank learning for explaining time series [10.706092195673257]
We propose a new method for time series explainability called FLEXtime.
It uses a filterbank to split the time series into frequency bands and learns the optimal combinations of these bands.
Our evaluation shows that FLEXtime on average outperforms state-of-the-art explainability methods across a range of datasets.
arXiv Detail & Related papers (2024-11-06T15:06:42Z) - Omni-Dimensional Frequency Learner for General Time Series Analysis [12.473862872616998]
We present Omni-Dimensional Frequency Learner (ODFL) model based on a in depth analysis among all the three aspects of the spectrum feature.
Technically, our method is composed of a semantic-adaptive global filter with attention to the un-salient frequency bands and partial operation among the channel dimension.
ODFL achieves consistent state-of-the-art in five mainstream time series analysis tasks, including short- and long-term forecasting, imputation, classification, and anomaly detection.
arXiv Detail & Related papers (2024-07-15T03:48:16Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
Time Series Forecasting plays a crucial role in various fields such as industrial equipment maintenance, meteorology, energy consumption, traffic flow and financial investment.
Current deep learning-based predictive models often exhibit a significant deviation between their forecasting outcomes and the ground truth.
We propose a novel model Frequency-domain Attention In Two Horizons, which decomposes time series into trend and seasonal components.
arXiv Detail & Related papers (2024-05-22T02:37:02Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Frequency-domain MLPs are More Effective Learners in Time Series
Forecasting [67.60443290781988]
Time series forecasting has played the key role in different industrial domains, including finance, traffic, energy, and healthcare.
Most-based forecasting methods suffer from the point-wise mappings and information bottleneck.
We propose FreTS, a simple yet effective architecture built upon Frequency-domains for Time Series forecasting.
arXiv Detail & Related papers (2023-11-10T17:05:13Z) - WFTNet: Exploiting Global and Local Periodicity in Long-term Time Series
Forecasting [61.64303388738395]
We propose a Wavelet-Fourier Transform Network (WFTNet) for long-term time series forecasting.
Tests on various time series datasets show WFTNet consistently outperforms other state-of-the-art baselines.
arXiv Detail & Related papers (2023-09-20T13:44:18Z) - MultiWave: Multiresolution Deep Architectures through Wavelet
Decomposition for Multivariate Time Series Prediction [6.980076213134384]
MultiWave is a novel framework that enhances deep learning time series models by incorporating components that operate at the intrinsic frequencies of signals.
We show that MultiWave consistently identifies critical features and their frequency components, thus providing valuable insights into the applications studied.
arXiv Detail & Related papers (2023-06-16T20:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.