Active Initialization Experiment of Superconducting Qubit Using
Quantum-circuit Refrigerator
- URL: http://arxiv.org/abs/2306.10212v1
- Date: Fri, 16 Jun 2023 23:50:14 GMT
- Title: Active Initialization Experiment of Superconducting Qubit Using
Quantum-circuit Refrigerator
- Authors: Teruaki Yoshioka, Hiroto Mukai, Akiyoshi Tomonaga, Shintaro Takada,
Yuma Okazaki, Nobu-Hisa Kaneko, Shuji Nakamura, Jaw-Shen Tsai
- Abstract summary: We demonstrate a superconducting qubit with a quantum-circuit refrigerator (QCR)
Photon-assisted tunneling of quasiparticles in the QCR can temporally increase the relaxation time of photons inside the resonator.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The initialization of superconducting qubits is one of the essential
techniques for the realization of quantum computation. In previous research,
initialization above 99\% fidelity has been achieved at 280 ns. Here, we
demonstrate the rapid initialization of a superconducting qubit with a
quantum-circuit refrigerator (QCR). Photon-assisted tunneling of quasiparticles
in the QCR can temporally increase the relaxation time of photons inside the
resonator and helps release energy from the qubit to the environment.
Experiments using this protocol have shown that 99\% of initialization time is
reduced to 180 ns. This initialization time depends strongly on the relaxation
rate of the resonator, and faster initialization is possible by reducing the
resistance of the QCR, which limits the ON/OFF ratio, and by strengthening the
coupling between the QCR and the resonator.
Related papers
- Probing instantaneous quantum circuit refrigeration in the quantum regime [0.0]
A quantum circuit refrigerator (QCR) is capable of electrically cooling the excited population of quantum systems.
In this study, we demonstrated instantaneous QCR in the quantum regime.
arXiv Detail & Related papers (2024-07-19T11:38:44Z) - Efficient initialization of fluxonium qubits based on auxiliary energy
levels [27.239682092819574]
A quantum electrodynamics system transfers the state between the qubit and a short-lived cavity through microwave driving.
We exploit the flux-tunability of fluxonium to enable an interaction between a non-computational qubit transition and the excitation cavity.
We show that our scheme has a built-in benefit in simultaneously removing the second-excited state population of the qubit, and can be easily incorporated into a large-scale fluxonium processor.
arXiv Detail & Related papers (2024-02-09T09:30:00Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Initial experimental results on a superconducting-qubit reset based on
photon-assisted quasiparticle tunneling [0.0]
We present here our recent results on qubit reset scheme based on a quantum-circuit refrigerator (QCR)
We use the photon-assisted quasiparticle tunneling through a superconductor--insulator--normal-metal--insulator--superconductor junction to controllably decrease the energy relaxation time of the qubit.
We reach a qubit ground-state probability of roughly 97% with 80-ns pulses starting from the first excited state.
arXiv Detail & Related papers (2022-12-02T10:01:00Z) - Amplification of cascaded downconversion by reusing photons with a
switchable cavity [62.997667081978825]
We propose a scheme to amplify triplet production rates by using a fast switch and a delay loop.
Our proof-of-concept device increases the rate of detected photon triplets as predicted.
arXiv Detail & Related papers (2022-09-23T15:53:44Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Recent Developments in Quantum-Circuit Refrigeration [0.0]
In 2017, the invention of a quantum-circuit refrigerator inspired a series of experimental studies.
Theoretically, it is predicted that state-of-the-art superconducting resonators and qubits can be reset with an infidelity lower than $10-4$ in nanoseconds.
In the future, the QCR may be experimentally used to quickly reset superconducting qubits, and hence assist in the great challenge of building a practical quantum computer.
arXiv Detail & Related papers (2021-11-22T14:27:26Z) - Beating the thermal limit of qubit initialization with a Bayesian
Maxwell's demon [48.7576911714538]
Fault-tolerant quantum computing requires initializing the quantum register in a well-defined fiducial state.
In solid-state systems, this is typically achieved through thermalization to a cold reservoir.
We present a method of preparing a fiducial quantum state with a confidence beyond the thermal limit.
arXiv Detail & Related papers (2021-10-05T13:55:08Z) - Charge dynamics in quantum-circuit refrigeration: thermalization and
microwave gain [0.0]
Photon-assisted tunneling through normal-metal-insulator-superconductor junctions could provide a convenient tool to control the dissipation of quantum-electric circuits in-situ.
Here we derive a master equation describing both quantum-electric and charge degrees of freedom, and discover that typical experimental parameters of low temperature and yet lower charging energy yield a separation of time scales for the charge and quantum dynamics.
arXiv Detail & Related papers (2021-07-09T07:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.