Probing instantaneous quantum circuit refrigeration in the quantum regime
- URL: http://arxiv.org/abs/2407.14219v2
- Date: Tue, 13 Aug 2024 09:10:42 GMT
- Title: Probing instantaneous quantum circuit refrigeration in the quantum regime
- Authors: Shuji Nakamura, Teruaki Yoshioka, Sergei Lemziakov, Dmitrii Lvov, Hiroto Mukai, Akiyoshi Tomonaga, Shintaro Takada, Yuma Okazaki, Nobu-Hisa Kaneko, Jukka Pekola, Jaw-Shen Tsai,
- Abstract summary: A quantum circuit refrigerator (QCR) is capable of electrically cooling the excited population of quantum systems.
In this study, we demonstrated instantaneous QCR in the quantum regime.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in circuit quantum electrodynamics have enabled precise manipulation and detection of the single energy quantum in quantum systems. A quantum circuit refrigerator (QCR) is capable of electrically cooling the excited population of quantum systems, such as superconducting resonators and qubits, through photon-assisted tunneling of quasi-particles within a superconductor-insulator-normal metal junction. In this study, we demonstrated instantaneous QCR in the quantum regime. We performed the time-resolved measurement of the QCR-induced cooling of photon number inside the superconducting resonator by harnessing a qubit as a photon detector. From the enhanced photon loss rate of the resonator estimated from the amount of the AC Stark shift, the QCR was shown to have a cooling power of approximately 300 aW. Furthermore, even below the single energy quantum, the QCR can reduce the number of photons inside the resonator with 100 ns pulse from thermal equilibrium. Numerical calculations based on the Lindblad master equation successfully reproduced these experimental results.
Related papers
- Quantum free-electron laser oscillator [0.11948485691768121]
A single-pass quantum free-electron laser has a large interaction length that impedes the experimental realization.
Here we show that a quantum free-electron laser is closer to a coherent state in comparison to existing classical free-electron lasers.
The narrowing of the photon distribution implies reduced intensity fluctuations of the emitted radiation, which in turn lead to decreased noise in imaging experiments or to an enhanced sensitivity in interferometric applications.
arXiv Detail & Related papers (2024-08-26T08:43:19Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Beyond-adiabatic Quantum Admittance of a Semiconductor Quantum Dot at High Frequencies: Rethinking Reflectometry as Polaron Dynamics [0.0]
We develop a self-consistent quantum master equation formalism to obtain the admittance of a quantum dot tunnel-coupled to a charge reservoir.
We describe two new photon-mediated regimes: Floquet broadening, determined by the dressing of the QD states, and broadening determined by photon loss in the system.
arXiv Detail & Related papers (2023-07-31T14:46:43Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Full counting statistics of the photocurrent through a double quantum
dot embedded in a driven microwave resonator [0.0]
Detection of single, itinerant microwave photons is an important functionality for emerging quantum technology applications.
It was demonstrated that a double quantum dot (DQD) coupled to a microwave resonator can act as an efficient and continuous photodetector.
Here we theoretically investigate, in the same system, the fluctuations of the photocurrent through the DQD for a coherent microwave drive of the resonator.
arXiv Detail & Related papers (2022-07-14T14:17:30Z) - Recent Developments in Quantum-Circuit Refrigeration [0.0]
In 2017, the invention of a quantum-circuit refrigerator inspired a series of experimental studies.
Theoretically, it is predicted that state-of-the-art superconducting resonators and qubits can be reset with an infidelity lower than $10-4$ in nanoseconds.
In the future, the QCR may be experimentally used to quickly reset superconducting qubits, and hence assist in the great challenge of building a practical quantum computer.
arXiv Detail & Related papers (2021-11-22T14:27:26Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Photon-Dressed Bloch-Siegert Shift in an Ultrastrongly Coupled Circuit
Quantum Electrodynamical System [4.3957154133979905]
A cavity quantum electrodynamical (QED) system beyond the strong-coupling regime is expected to exhibit intriguing quantum phenomena.
We report a direct measurement of the photon-dressed qubit transition frequencies up to four photons by harnessing the same type of state transitions in an ultrastrongly coupled circuit-QED system.
arXiv Detail & Related papers (2020-07-01T05:28:33Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.