GLIMMER: generalized late-interaction memory reranker
- URL: http://arxiv.org/abs/2306.10231v1
- Date: Sat, 17 Jun 2023 01:54:25 GMT
- Title: GLIMMER: generalized late-interaction memory reranker
- Authors: Michiel de Jong, Yury Zemlyanskiy, Nicholas FitzGerald, Sumit Sanghai,
William W. Cohen, Joshua Ainslie
- Abstract summary: Memory-augmentation is a powerful approach for incorporating external information into language models.
Recent work introduced LUMEN, a memory-retrieval hybrid that partially pre-computes memory and updates memory representations on the fly with a smaller live encoder.
We propose GLIMMER, which improves on this approach through 1) exploiting free access to the powerful memory representations by applying a shallow reranker on top of memory to drastically improve retrieval quality at low cost.
- Score: 29.434777627686692
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Memory-augmentation is a powerful approach for efficiently incorporating
external information into language models, but leads to reduced performance
relative to retrieving text. Recent work introduced LUMEN, a memory-retrieval
hybrid that partially pre-computes memory and updates memory representations on
the fly with a smaller live encoder.
We propose GLIMMER, which improves on this approach through 1) exploiting
free access to the powerful memory representations by applying a shallow
reranker on top of memory to drastically improve retrieval quality at low cost,
and 2) incorporating multi-task training to learn a general and higher quality
memory and live encoder. GLIMMER achieves strong gains in performance at faster
speeds compared to LUMEN and FiD on the KILT benchmark of knowledge-intensive
tasks.
Related papers
- Breaking Memory Limits: Gradient Wavelet Transform Enhances LLMs Training [45.225732322141994]
Large language models (LLMs) have impressive performance across a range of natural language processing tasks.
Their vast number of parameters introduces significant memory challenges during training.
Existing memory-efficient algorithms often rely on techniques such as singular value decomposition projection or weight freezing.
We propose a novel solution called Gradient Wavelet Transform (GWT), which applies wavelet transforms to gradients in order to significantly reduce the memory requirements.
arXiv Detail & Related papers (2025-01-13T11:35:09Z) - Memory Layers at Scale [67.00854080570979]
This work takes memory layers beyond proof-of-concept, proving their utility at contemporary scale.
On downstream tasks, language models augmented with our improved memory layer outperform dense models with more than twice the budget, as well as mixture-of-expert models when matched for both compute and parameters.
We provide a fully parallelizable memory layer implementation, demonstrating scaling laws with up to 128B memory parameters, pretrained to 1 trillion tokens, comparing to base models with up to 8B parameters.
arXiv Detail & Related papers (2024-12-12T23:56:57Z) - MEMO: Fine-grained Tensor Management For Ultra-long Context LLM Training [24.066283519769968]
Large Language Models (LLMs) have been trained using extended context lengths to foster more creative applications.
We propose MEMO, a novel framework for fine-grained activation memory management.
MeMO achieves an average of 1.97x and 1.80x MFU compared to Megatron-LM and DeepSpeed.
arXiv Detail & Related papers (2024-07-16T18:59:49Z) - $\text{Memory}^3$: Language Modeling with Explicit Memory [22.572376536612015]
We equip large language models (LLMs) with explicit memory, a memory format cheaper than model parameters and text retrieval-augmented generation (RAG)
As a preliminary proof of concept, we train from scratch a 2.4B LLM, which achieves better performance than much larger LLMs and RAG models.
We introduce a memory circuitry theory to support the externalization of knowledge, and present novel techniques including a memory sparsification mechanism that makes storage tractable.
arXiv Detail & Related papers (2024-07-01T11:07:23Z) - MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory [49.96019697955383]
We introduce MemLLM, a novel method of enhancing large language models (LLMs) by integrating a structured and explicit read-and-write memory module.
Our experiments indicate that MemLLM enhances the LLM's performance and interpretability, in language modeling in general and knowledge-intensive tasks in particular.
arXiv Detail & Related papers (2024-04-17T18:13:16Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
We introduce low-memory optimization with adaptive learning rate (AdaLomo) for large language models.
AdaLomo results on par with AdamW, while significantly reducing memory requirements, thereby lowering the hardware barrier to training large language models.
arXiv Detail & Related papers (2023-10-16T09:04:28Z) - MEMORY-VQ: Compression for Tractable Internet-Scale Memory [45.7528997281282]
Memory-based methods like LUMEN pre-compute token representations for retrieved passages to drastically speed up inference.
We propose MEMORY-VQ, a new method to reduce storage requirements of memory-augmented models without sacrificing performance.
arXiv Detail & Related papers (2023-08-28T21:11:18Z) - Augmenting Language Models with Long-Term Memory [142.04940250657637]
Existing large language models (LLMs) can only afford fix-sized inputs due to the input length limit.
We propose a framework, Language Models Augmented with Long-Term Memory (LongMem), which enables LLMs to memorize long history.
arXiv Detail & Related papers (2023-06-12T15:13:39Z) - Lift Yourself Up: Retrieval-augmented Text Generation with Self Memory [72.36736686941671]
We propose a novel framework, selfmem, for improving retrieval-augmented generation models.
Selfmem iteratively employs a retrieval-augmented generator to create an unbounded memory pool and using a memory selector to choose one output as memory for the subsequent generation round.
We evaluate the effectiveness of selfmem on three distinct text generation tasks.
arXiv Detail & Related papers (2023-05-03T21:40:54Z) - Memformer: A Memory-Augmented Transformer for Sequence Modeling [55.780849185884996]
We present Memformer, an efficient neural network for sequence modeling.
Our model achieves linear time complexity and constant memory space complexity when processing long sequences.
arXiv Detail & Related papers (2020-10-14T09:03:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.