Multi-Scale Simulation of Complex Systems: A Perspective of Integrating Knowledge and Data
- URL: http://arxiv.org/abs/2306.10275v2
- Date: Tue, 23 Jul 2024 09:23:02 GMT
- Title: Multi-Scale Simulation of Complex Systems: A Perspective of Integrating Knowledge and Data
- Authors: Huandong Wang, Huan Yan, Can Rong, Yuan Yuan, Fenyu Jiang, Zhenyu Han, Hongjie Sui, Depeng Jin, Yong Li,
- Abstract summary: We will systematically review the literature on multi-scale simulation of complex systems from the perspective of knowledge and data.
We divide the main objectives of multi-scale modeling and simulation into five categories by considering scenarios with clear scale and scenarios with unclear scale.
We introduce the applications of multi-scale simulation in typical matter systems and social systems.
- Score: 25.582280429427833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex system simulation has been playing an irreplaceable role in understanding, predicting, and controlling diverse complex systems. In the past few decades, the multi-scale simulation technique has drawn increasing attention for its remarkable ability to overcome the challenges of complex system simulation with unknown mechanisms and expensive computational costs. In this survey, we will systematically review the literature on multi-scale simulation of complex systems from the perspective of knowledge and data. Firstly, we will present background knowledge about simulating complex system simulation and the scales in complex systems. Then, we divide the main objectives of multi-scale modeling and simulation into five categories by considering scenarios with clear scale and scenarios with unclear scale, respectively. After summarizing the general methods for multi-scale simulation based on the clues of knowledge and data, we introduce the adopted methods to achieve different objectives. Finally, we introduce the applications of multi-scale simulation in typical matter systems and social systems.
Related papers
- Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
This paper proposes a novel learning based simulation model that characterizes the varying spatial and temporal dependencies in particle systems.
We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb.
arXiv Detail & Related papers (2023-05-21T03:51:03Z) - Addressing computational challenges in physical system simulations with
machine learning [0.0]
We present a machine learning-based data generator framework tailored to aid researchers who utilize simulations to examine various physical systems or processes.
Our approach involves a two-step process: first, we train a supervised predictive model using a limited simulated dataset to predict simulation outcomes.
Subsequently, a reinforcement learning agent is trained to generate accurate, simulation-like data by leveraging the supervised model.
arXiv Detail & Related papers (2023-05-16T17:31:50Z) - Challenges and opportunities for machine learning in multiscale
computational modeling [0.0]
Solving for complex multiscale systems remains computationally onerous due to the high dimensionality of the solution space.
Machine learning (ML) has emerged as a promising solution that can either serve as a surrogate for, accelerate or augment traditional numerical methods.
This paper provides a perspective on the opportunities and challenges of using ML for complex multiscale modeling and simulation.
arXiv Detail & Related papers (2023-03-22T02:04:39Z) - Synthetic Data-Based Simulators for Recommender Systems: A Survey [55.60116686945561]
This survey aims at providing a comprehensive overview of the recent trends in the field of modeling and simulation.
We start with the motivation behind the development of frameworks implementing the simulations -- simulators.
We provide a new consistent classification of existing simulators based on their functionality, approbation, and industrial effectiveness.
arXiv Detail & Related papers (2022-06-22T19:33:21Z) - Learning Individual Interactions from Population Dynamics with Discrete-Event Simulation Model [9.827590402695341]
We will explore the possibility of learning a discrete-event simulation representation of complex system dynamics.
Our results show that the algorithm can data-efficiently capture complex network dynamics in several fields with meaningful events.
arXiv Detail & Related papers (2022-05-04T21:33:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols.
We propose four representative physical systems, as well as a collection of both widely used classical time-based and representative data-driven methods.
arXiv Detail & Related papers (2021-08-09T17:39:09Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - The 4th International Workshop on Smart Simulation and Modelling for
Complex Systems [4.489415125484399]
Computer-based modelling and simulation have become useful tools to facilitate humans to understand systems in different domains.
Smart systems such as multi-agent systems have demonstrated advantages and great potentials in modelling and simulating complex systems.
arXiv Detail & Related papers (2021-02-01T21:40:28Z) - Multiscale Simulations of Complex Systems by Learning their Effective
Dynamics [10.52078600986485]
We present a systematic framework that bridges large scale simulations and reduced order models to Learn the Effective Dynamics.
LED provides a novel potent modality for the accurate prediction of complex systems.
LED is applicable to systems ranging from chemistry to fluid mechanics and reduces computational effort by up to two orders of magnitude.
arXiv Detail & Related papers (2020-06-24T02:35:51Z) - Combining Machine Learning with Knowledge-Based Modeling for Scalable
Forecasting and Subgrid-Scale Closure of Large, Complex, Spatiotemporal
Systems [48.7576911714538]
We attempt to utilize machine learning as the essential tool for integrating pasttemporal data into predictions.
We propose combining two approaches: (i) a parallel machine learning prediction scheme; and (ii) a hybrid technique, for a composite prediction system composed of a knowledge-based component and a machine-learning-based component.
We demonstrate that not only can this method combining (i) and (ii) be scaled to give excellent performance for very large systems, but also that the length of time series data needed to train our multiple, parallel machine learning components is dramatically less than that necessary without parallelization.
arXiv Detail & Related papers (2020-02-10T23:21:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.