論文の概要: Conditional expectation using compactification operators
- arxiv url: http://arxiv.org/abs/2306.10592v3
- Date: Wed, 23 Aug 2023 20:08:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-25 17:29:35.154989
- Title: Conditional expectation using compactification operators
- Title(参考訳): コンパクト化演算子を用いた条件付き期待
- Authors: Suddhasattwa Das
- Abstract要約: 本稿では,条件付き予測を推定するための演算子理論的アプローチについて述べる。
カーネル積分作用素は、再生されたカーネルヒルベルト空間における線形逆問題として推定問題を設定するためのコンパクト化ツールとして用いられる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The separate tasks of denoising, least squares expectation, and manifold
learning can often be posed in a common setting of finding the conditional
expectations arising from a product of two random variables. This paper focuses
on this more general problem and describes an operator theoretic approach to
estimating the conditional expectation. Kernel integral operators are used as a
compactification tool, to set up the estimation problem as a linear inverse
problem in a reproducing kernel Hilbert space. This equation is shown to have
solutions that allow numerical approximation, thus guaranteeing the convergence
of data-driven implementations. The overall technique is easy to implement, and
their successful application to some real-world problems are also shown.
- Abstract(参考訳): 分数化、最小二乗期待、多様体学習という別のタスクは、しばしば2つの確率変数の積から生じる条件付き期待を見つける共通の設定で与えられる。
本稿では、このより一般的な問題に焦点をあて、条件付き期待値を推定する演算子理論的アプローチについて述べる。
カーネル積分作用素は、再生カーネルヒルベルト空間における線形逆問題として推定問題を設定するためのコンパクト化ツールとして用いられる。
この方程式は数値近似を許容する解を持ち、したがってデータ駆動実装の収束を保証する。
全体的なテクニックは実装が容易で、現実世界の問題に対する彼らの成功例も示されています。
関連論文リスト
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
機械学習の幅広い問題にまたがる正規化誤差フィードバックアルゴリズムに対する収束の最初の証明を提供する。
提案手法では,許容可能なステップサイズが大きくなったため,新しい正規化エラーフィードバックアルゴリズムは,各種タスクにおける非正規化エラーよりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T10:19:27Z) - Variance Reduced Halpern Iteration for Finite-Sum Monotone Inclusions [18.086061048484616]
平衡問題の幅広いクラスをモデル化した有限サム単調包含問題について検討する。
我々の主な貢献は、複雑性の保証を改善するために分散還元を利用する古典的ハルパーン反復の変種である。
我々は、この複雑さが単調なリプシッツ設定では改善できないと論じる。
論文 参考訳(メタデータ) (2023-10-04T17:24:45Z) - Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
Spaces [102.08678737900541]
線形汎関数に対するバイアス認識設計のためのアルゴリズムを提供する。
準ガウス雑音下での固定および適応設計に対する漸近的でない信頼集合を導出する。
論文 参考訳(メタデータ) (2022-05-26T20:56:25Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
可分バナッハ空間上で定義された収縮作用素の定点を推定する問題について検討する。
演算子欠陥と推定誤差の両方に対して漸近的でない境界を確立する。
論文 参考訳(メタデータ) (2022-01-21T02:46:57Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Variance-Reduced Splitting Schemes for Monotone Stochastic Generalized
Equations [0.0]
演算子を期待値とする単調な包摂問題を考える。
分割スキームの直接適用は、各ステップにおける期待値マップによる問題解決の必要性により複雑である。
本稿では,不確実性に対処する手法を提案する。
論文 参考訳(メタデータ) (2020-08-26T02:33:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。