Decongestion by Representation: Learning to Improve Economic Welfare in Marketplaces
- URL: http://arxiv.org/abs/2306.10606v2
- Date: Wed, 3 Apr 2024 12:22:29 GMT
- Title: Decongestion by Representation: Learning to Improve Economic Welfare in Marketplaces
- Authors: Omer Nahum, Gali Noti, David Parkes, Nir Rosenfeld,
- Abstract summary: In modern online marketplaces, prices are typically set in a decentralized way by sellers, and the information about items is inevitably partial.
The power of a platform is limited to controlling representations -- the subset of information about items presented by default to users.
This motivates the present study of decongestion by proxy representation, where a platform seeks to learn representations that reduce congestion and thus improve social welfare.
- Score: 14.105727639288316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Congestion is a common failure mode of markets, where consumers compete inefficiently on the same subset of goods (e.g., chasing the same small set of properties on a vacation rental platform). The typical economic story is that prices decongest by balancing supply and demand. But in modern online marketplaces, prices are typically set in a decentralized way by sellers, and the information about items is inevitably partial. The power of a platform is limited to controlling representations -- the subset of information about items presented by default to users. This motivates the present study of decongestion by representation, where a platform seeks to learn representations that reduce congestion and thus improve social welfare. The technical challenge is twofold: relying only on revealed preferences from the choices of consumers, rather than true preferences; and the combinatorial problem associated with representations that determine the features to reveal in the default view. We tackle both challenges by proposing a differentiable proxy of welfare that can be trained end-to-end on consumer choice data. We develop sufficient conditions for when decongestion promotes welfare, and present the results of extensive experiments on both synthetic and real data that demonstrate the utility of our approach.
Related papers
- A Bargaining-based Approach for Feature Trading in Vertical Federated
Learning [54.51890573369637]
We propose a bargaining-based feature trading approach in Vertical Federated Learning (VFL) to encourage economically efficient transactions.
Our model incorporates performance gain-based pricing, taking into account the revenue-based optimization objectives of both parties.
arXiv Detail & Related papers (2024-02-23T10:21:07Z) - A Causal Perspective on Loan Pricing: Investigating the Impacts of
Selection Bias on Identifying Bid-Response Functions [1.0937531920233807]
We take a step towards understanding the effects of selection bias by posing pricing as a problem of causal inference.
In our experiments, we simulate varying levels of selection bias on a semi-synthetic dataset on mortgage loan applications in Belgium.
We implement state-of-the-art methods from causal machine learning and show their capability to overcome selection bias in pricing data.
arXiv Detail & Related papers (2023-09-07T14:14:30Z) - Improved Bayes Risk Can Yield Reduced Social Welfare Under Competition [99.7047087527422]
In this work, we demonstrate that competition can fundamentally alter the behavior of machine learning scaling trends.
We find many settings where improving data representation quality decreases the overall predictive accuracy across users.
At a conceptual level, our work suggests that favorable scaling trends for individual model-providers need not translate to downstream improvements in social welfare.
arXiv Detail & Related papers (2023-06-26T13:06:34Z) - No Bidding, No Regret: Pairwise-Feedback Mechanisms for Digital Goods
and Data Auctions [14.87136964827431]
This study presents a novel mechanism design addressing a general repeated-auction setting.
The mechanism's novelty lies in using pairwise comparisons for eliciting information from the bidder.
Our focus on human factors contributes to the development of more human-aware and efficient mechanism design.
arXiv Detail & Related papers (2023-06-02T18:29:07Z) - Competition, Alignment, and Equilibria in Digital Marketplaces [97.03797129675951]
We study a duopoly market where platform actions are bandit algorithms and the two platforms compete for user participation.
Our main finding is that competition in this market does not perfectly align market outcomes with user utility.
arXiv Detail & Related papers (2022-08-30T17:43:58Z) - Estimating Causal Effects of Multi-Aspect Online Reviews with
Multi-Modal Proxies [24.246450472404614]
This work empirically examines the causal effects of user-generated online reviews on a granular level.
We consider multiple aspects, e.g., the Food and Service of a restaurant.
arXiv Detail & Related papers (2021-12-19T22:29:02Z) - Dual Side Deep Context-aware Modulation for Social Recommendation [50.59008227281762]
We propose a novel graph neural network to model the social relation and collaborative relation.
On top of high-order relations, a dual side deep context-aware modulation is introduced to capture the friends' information and item attraction.
arXiv Detail & Related papers (2021-03-16T11:08:30Z) - Fairness, Welfare, and Equity in Personalized Pricing [88.9134799076718]
We study the interplay of fairness, welfare, and equity considerations in personalized pricing based on customer features.
We show the potential benefits of personalized pricing in two settings: pricing subsidies for an elective vaccine, and the effects of personalized interest rates on downstream outcomes in microcredit.
arXiv Detail & Related papers (2020-12-21T01:01:56Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
In computer vision, learning from long tailed datasets is a recurring theme, especially for natural image datasets.
Our proposal posits a meta-distributional scenario, where the data generating mechanism is invariant across the label-conditional feature distributions.
This allows us to leverage a causal data inflation procedure to enlarge the representation of minority classes.
arXiv Detail & Related papers (2020-11-25T00:13:11Z) - Learning Smooth and Fair Representations [24.305894478899948]
This paper explores the ability to preemptively remove the correlations between features and sensitive attributes by mapping features to a fair representation space.
Empirically, we find that smoothing the representation distribution provides generalization guarantees of fairness certificates.
We do not observe that smoothing the representation distribution degrades the accuracy of downstream tasks compared to state-of-the-art methods in fair representation learning.
arXiv Detail & Related papers (2020-06-15T21:51:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.