論文の概要: Enhanced Masked Image Modeling for Analysis of Dental Panoramic
Radiographs
- arxiv url: http://arxiv.org/abs/2306.10623v1
- Date: Sun, 18 Jun 2023 19:20:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 19:36:03.006394
- Title: Enhanced Masked Image Modeling for Analysis of Dental Panoramic
Radiographs
- Title(参考訳): 歯科用パノラマX線写真解析のためのマスケ画像モデリング
- Authors: Amani Almalki and Longin Jan Latecki
- Abstract要約: 本研究では,マスク型画像モデリング(SimMIM)変換器上での自己拡張型自己教師学習を提案する。
マスクされたパッチの予測損失に加えて、SD-SimMIMは可視パッチの自己蒸留損失を計算する。
SD-SimMIMを歯科用パノラマX線に応用し, 歯の修復, 矯正器具の検出, 症例分割作業を行った。
- 参考スコア(独自算出の注目度): 8.397847537464534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The computer-assisted radiologic informative report has received increasing
research attention to facilitate diagnosis and treatment planning for dental
care providers. However, manual interpretation of dental images is limited,
expensive, and time-consuming. Another barrier in dental imaging is the limited
number of available images for training, which is a challenge in the era of
deep learning. This study proposes a novel self-distillation (SD) enhanced
self-supervised learning on top of the masked image modeling (SimMIM)
Transformer, called SD-SimMIM, to improve the outcome with a limited number of
dental radiographs. In addition to the prediction loss on masked patches,
SD-SimMIM computes the self-distillation loss on the visible patches. We apply
SD-SimMIM on dental panoramic X-rays for teeth numbering, detection of dental
restorations and orthodontic appliances, and instance segmentation tasks. Our
results show that SD-SimMIM outperforms other self-supervised learning methods.
Furthermore, we augment and improve the annotation of an existing dataset of
panoramic X-rays.
- Abstract(参考訳): コンピュータ支援放射線情報報告は, 歯科医療提供者の診断・治療計画を容易にするため, 研究の注目を集めている。
しかし,手動による歯科画像の解釈には限界があり,高価であり,時間を要する。
デンタルイメージングのもうひとつの障壁は、トレーニング用に利用可能なイメージの数が限られていることだ。
本研究では,マスク画像モデリング(simmim)トランスフォーマ(sd-simmim)上に自己教師付き学習を施した新しい自己蒸留法(sd)を提案する。
マスクパッチの予測損失に加えて、SD-SimMIMは可視パッチの自己蒸留損失を計算する。
SD-SimMIMを歯科用パノラマX線に応用し, 歯の修復, 矯正器具の検出, 症例分割作業を行った。
その結果,SD-SimMIMは他の自己教師あり学習方法よりも優れていた。
さらに、既存のパノラマX線データセットのアノテーションを増強し、改善する。
関連論文リスト
- Improving Dental Diagnostics: Enhanced Convolution with Spatial Attention Mechanism [0.0]
本稿では,SimAMアテンションモジュールと統合されたResNet50アーキテクチャを改良し,歯科画像における限られたコントラストの課題に対処する。
本モデルでは,F1スコアの0.676を達成し,様々な特徴抽出技術に対して優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-11T01:12:30Z) - Sparse Anatomical Prompt Semi-Supervised Learning with Masked Image
Modeling for CBCT Tooth Segmentation [10.617296334463942]
Cone Beam Computed Tomography (CBCT) 歯科画像における歯の識別とセグメンテーションは, 歯科医が行う手技診断の効率と精度を著しく向上させることができる。
既存のセグメンテーション手法は主に大規模なデータボリュームトレーニングに基づいて開発され、そのアノテーションは非常に時間がかかります。
本研究では, 大量の未ラベルデータを効果的に活用し, 限られたラベル付きデータで正確な歯のセグメンテーションを実現するタスク指向Masked Auto-Encoderパラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-07T05:05:21Z) - MARformer: An Efficient Metal Artifact Reduction Transformer for Dental CBCT Images [53.62335292022492]
金属歯のインプラントはCBCTイメージングの過程で不愉快な金属加工物をもたらす可能性がある。
歯科用CBCT画像から金属アーティファクト低減(MAR)を実現するための効率的なトランスフォーマーを開発した。
P2FFN (Patch-wise Perceptive Feed Forward Network) も提案されている。
論文 参考訳(メタデータ) (2023-11-16T06:02:03Z) - Multiclass Segmentation using Teeth Attention Modules for Dental X-ray
Images [8.041659727964305]
本研究では,スイニングトランスフォーマーとTABを用いたM-Net様構造を取り入れた新しい歯のセグメンテーションモデルを提案する。
提案したTABは、歯の複雑な構造に特化するユニークな注意機構を利用する。
提案アーキテクチャは,各歯とその周辺構造を正確に定義し,局所的およびグローバルな文脈情報を効果的に取得する。
論文 参考訳(メタデータ) (2023-11-07T06:20:34Z) - MUSCLE: Multi-task Self-supervised Continual Learning to Pre-train Deep
Models for X-ray Images of Multiple Body Parts [63.30352394004674]
MUSCLE(Multi-task Self-super-vised Continual Learning)は、医用画像処理タスクのための、新しい自己教師付き事前学習パイプラインである。
MUSCLEは、複数の身体部分から収集したX線を集約して表現学習を行い、よく設計された連続学習手順を採用する。
肺炎分類,骨格異常分類,肺セグメンテーション,結核(TB)検出など,9つの実世界のX線データセットを用いてMUSCLEを評価する。
論文 参考訳(メタデータ) (2023-10-03T12:19:19Z) - AMLP:Adaptive Masking Lesion Patches for Self-supervised Medical Image
Segmentation [67.97926983664676]
自己監督型マスク画像モデリングは自然画像に対して有望な結果を示した。
しかし,このような手法を医用画像に直接適用することは依然として困難である。
適応型マスキング病変パッチ(AMLP)の自己管理型医用画像分割フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-08T13:18:10Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in
Brain Images [59.85702949046042]
病気の画像の健全なバージョンを生成し,それを用いて画素単位の異常マップを得るための弱教師付き手法を提案する。
健常者を対象にした拡散モデルを用いて, サンプリングプロセスの各ステップで拡散拡散確率モデル (DDPM) と拡散拡散確率モデル (DDIM) を組み合わせる。
本手法が正常なサンプルに適用された場合,入力画像は大幅な修正を伴わずに再構成されることを確認した。
論文 参考訳(メタデータ) (2023-08-03T21:56:50Z) - Generative Adversarial Networks for Dental Patient Identity Protection
in Orthodontic Educational Imaging [0.0]
本研究は, 歯科患者イメージを効果的に識別するためのGANインバージョン技術を提案する。
この手法は, 重要な歯科的特徴を保ちながら, プライバシの懸念に対処し, 歯科教育や研究に有用な資源を創出する。
論文 参考訳(メタデータ) (2023-07-05T04:14:57Z) - Self-Supervised Learning with Masked Image Modeling for Teeth Numbering,
Detection of Dental Restorations, and Instance Segmentation in Dental
Panoramic Radiographs [8.397847537464534]
本研究の目的は,SimMIM や UM-MAE といった近年の自己教師型学習手法を応用して,限られた数の歯科用ラジオグラフィーのモデル効率と理解を高めることである。
我々の知る限りでは、歯科用パノラマX線写真にスイニングトランスフォーマーに自己教師あり学習法を適用した最初の研究である。
論文 参考訳(メタデータ) (2022-10-20T16:50:07Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。