論文の概要: Spatial-Temporal Graph Learning with Adversarial Contrastive Adaptation
- arxiv url: http://arxiv.org/abs/2306.10683v1
- Date: Mon, 19 Jun 2023 03:09:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 19:16:23.535078
- Title: Spatial-Temporal Graph Learning with Adversarial Contrastive Adaptation
- Title(参考訳): 相反的適応を伴う空間-時間グラフ学習
- Authors: Qianru Zhang and Chao Huang and Lianghao Xia and Zheng Wang and
Siuming Yiu and Ruihua Han
- Abstract要約: 効率的な自己教師型学習を実現するための空間時空間グラフ学習モデル(GraphST)を提案する。
提案手法は, 重要な多視点自己教師情報の蒸留を自動化する, 対向的コントラスト学習パラダイムである。
実生活データセット上での様々な時空間予測タスクにおいて,提案手法の優位性を示す。
- 参考スコア(独自算出の注目度): 19.419836274690816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial-temporal graph learning has emerged as a promising solution for
modeling structured spatial-temporal data and learning region representations
for various urban sensing tasks such as crime forecasting and traffic flow
prediction. However, most existing models are vulnerable to the quality of the
generated region graph due to the inaccurate graph-structured information
aggregation schema. The ubiquitous spatial-temporal data noise and
incompleteness in real-life scenarios pose challenges in generating
high-quality region representations. To address this challenge, we propose a
new spatial-temporal graph learning model (GraphST) for enabling effective
self-supervised learning. Our proposed model is an adversarial contrastive
learning paradigm that automates the distillation of crucial multi-view
self-supervised information for robust spatial-temporal graph augmentation. We
empower GraphST to adaptively identify hard samples for better
self-supervision, enhancing the representation discrimination ability and
robustness. In addition, we introduce a cross-view contrastive learning
paradigm to model the inter-dependencies across view-specific region
representations and preserve underlying relation heterogeneity. We demonstrate
the superiority of our proposed GraphST method in various spatial-temporal
prediction tasks on real-life datasets. We release our model implementation via
the link: \url{https://github.com/HKUDS/GraphST}.
- Abstract(参考訳): 空間-時間グラフ学習は、犯罪予測や交通流予測のような様々な都市センシングタスクのための構造化空間-時間データのモデリングと学習領域表現のための有望なソリューションとして登場した。
しかし、既存のモデルのほとんどは、不正確なグラフ構造情報集約スキーマのため、生成された領域グラフの品質に弱い。
実生活シナリオにおけるユビキタスな空間-時間的データノイズと不完全性は、高品質な領域表現を生成する上で課題となる。
この課題に対処するために,効率的な自己教師付き学習を実現するための空間時空間グラフ学習モデル(GraphST)を提案する。
提案手法は, 空間時間グラフ強化のための重要な多視点自己教師情報の蒸留を自動化する, 対向的コントラスト学習パラダイムである。
我々は,graphstに適応的にハードサンプルを同定させ,自己視性を高め,表現識別能力とロバスト性を高めた。
さらに,ビュー固有の領域表現の相互依存性をモデル化し,その基礎となる関係性を維持するために,クロスビューコントラスト学習パラダイムを導入する。
実生活データセット上での様々な時空間予測タスクにおいて,提案手法の優位性を示す。
私たちは、以下のリンクを通じてモデル実装をリリースします。
関連論文リスト
- A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation [59.14165404728197]
我々は,分散シフト下での深層グラフ学習について,最新かつ先見的なレビューを行う。
具体的には,グラフ OOD 一般化,トレーニング時グラフ OOD 適応,テスト時グラフ OOD 適応の3つのシナリオについて述べる。
文献の理解を深めるために,提案した分類に基づく既存モデルを体系的に分類した。
論文 参考訳(メタデータ) (2024-10-25T02:39:56Z) - Graph Masked Autoencoder for Spatio-Temporal Graph Learning [38.085962443141206]
都市センシングの分野では,交通分析,人体移動評価,犯罪予測において,効果的な時間的予測の枠組みが重要な役割を担っている。
空間的および時間的データにデータノイズと空間性が存在することは、ロバスト表現を学習する上で、既存のニューラルネットワークモデルにとって大きな課題となる。
実効時間データ拡張のための新しい自己教師型学習パラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-14T07:33:33Z) - Graph Learning under Distribution Shifts: A Comprehensive Survey on
Domain Adaptation, Out-of-distribution, and Continual Learning [53.81365215811222]
グラフ学習の文脈における分布変化に対処する最新のアプローチ、戦略、洞察のレビューと要約を提供する。
既存のグラフ学習手法を,グラフ領域適応学習,グラフ配布学習,グラフ連続学習など,いくつかの重要なシナリオに分類する。
本稿では,この領域における現状を体系的に分析し,分散シフト下でのグラフ学習の可能性と今後の方向性について論じる。
論文 参考訳(メタデータ) (2024-02-26T07:52:40Z) - Temporal Graph Representation Learning with Adaptive Augmentation
Contrastive [12.18909612212823]
時間グラフ表現学習は、時間情報を取得するために低次元の動的ノード埋め込みを生成することを目的としている。
本稿では,適応拡張コントラスト(TGAC)モデルを用いたテンポラルグラフ表現学習を提案する。
実ネットワークにおける実験により,提案手法が他の時間グラフ表現学習法より優れていることを示す。
論文 参考訳(メタデータ) (2023-11-07T11:21:16Z) - Local-Global Information Interaction Debiasing for Dynamic Scene Graph
Generation [51.92419880088668]
マルチタスク学習に基づく新しいDynSGGモデルDynSGG-MTLを提案する。
長期的人間の行動は、大域的な制約に適合する複数のシーングラフを生成するためにモデルを監督し、尾の述語を学べないモデルを避ける。
論文 参考訳(メタデータ) (2023-08-10T01:24:25Z) - Automated Spatio-Temporal Graph Contrastive Learning [18.245433428868775]
パラメータ化コントラストビュージェネレータを用いた時間自動拡張方式を開発した。
AutoSTは多視点セマンティクスをよく保存した異種グラフに適応することができる。
いくつかの実世界のデータセットで3つのダウンストリーム時間的マイニングタスクの実験は、大きなパフォーマンス向上を示している。
論文 参考訳(メタデータ) (2023-05-06T03:52:33Z) - Spatio-Temporal Latent Graph Structure Learning for Traffic Forecasting [6.428566223253948]
S-Temporal Latent Graph Structure Learning Network (ST-LGSL) を提案する。
このモデルは多層パーセプトロンとK-Nearest Neighborに基づくグラフを用いて、データ全体から潜在グラフトポロジ情報を学習する。
kNNの接地確率行列に基づく依存関係-kNNと類似度メートル法により、ST-LGSLは地理的およびノード類似度に重点を置くトップを集約する。
論文 参考訳(メタデータ) (2022-02-25T10:02:49Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Cyclic Graph Attentive Match Encoder (CGAME): A Novel Neural Network For
OD Estimation [8.398623478484248]
知的交通システム(ITS)時代における交通管理・交通シミュレーションにおける原位置推定の役割
これまでのモデルベースのモデルは、未決定の課題に直面しており、追加の仮定と追加のデータに対する必死な需要が存在する。
本稿では,2層アテンション機構を備えた新しいグラフマッチング手法であるC-GAMEを提案する。
論文 参考訳(メタデータ) (2021-11-26T08:57:21Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
クロススケール空間時空間相関をモデル化し, 識別的, 堅牢な表現を追求する新しい枠組みを提案する。
CTLはCNNバックボーンとキーポイント推定器を使用して人体から意味的局所的特徴を抽出する。
グローバルな文脈情報と人体の物理的接続の両方を考慮して、多スケールグラフを構築するためのコンテキスト強化トポロジーを探求する。
論文 参考訳(メタデータ) (2021-04-15T14:32:12Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。