Spatial-Temporal Graph Learning with Adversarial Contrastive Adaptation
- URL: http://arxiv.org/abs/2306.10683v1
- Date: Mon, 19 Jun 2023 03:09:35 GMT
- Title: Spatial-Temporal Graph Learning with Adversarial Contrastive Adaptation
- Authors: Qianru Zhang and Chao Huang and Lianghao Xia and Zheng Wang and
Siuming Yiu and Ruihua Han
- Abstract summary: We propose a new spatial-temporal graph learning model (GraphST) for enabling effective self-supervised learning.
Our proposed model is an adversarial contrastive learning paradigm that automates the distillation of crucial multi-view self-supervised information.
We demonstrate the superiority of our proposed GraphST method in various spatial-temporal prediction tasks on real-life datasets.
- Score: 19.419836274690816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial-temporal graph learning has emerged as a promising solution for
modeling structured spatial-temporal data and learning region representations
for various urban sensing tasks such as crime forecasting and traffic flow
prediction. However, most existing models are vulnerable to the quality of the
generated region graph due to the inaccurate graph-structured information
aggregation schema. The ubiquitous spatial-temporal data noise and
incompleteness in real-life scenarios pose challenges in generating
high-quality region representations. To address this challenge, we propose a
new spatial-temporal graph learning model (GraphST) for enabling effective
self-supervised learning. Our proposed model is an adversarial contrastive
learning paradigm that automates the distillation of crucial multi-view
self-supervised information for robust spatial-temporal graph augmentation. We
empower GraphST to adaptively identify hard samples for better
self-supervision, enhancing the representation discrimination ability and
robustness. In addition, we introduce a cross-view contrastive learning
paradigm to model the inter-dependencies across view-specific region
representations and preserve underlying relation heterogeneity. We demonstrate
the superiority of our proposed GraphST method in various spatial-temporal
prediction tasks on real-life datasets. We release our model implementation via
the link: \url{https://github.com/HKUDS/GraphST}.
Related papers
- A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation [59.14165404728197]
We provide an up-to-date and forward-looking review of deep graph learning under distribution shifts.
Specifically, we cover three primary scenarios: graph OOD generalization, training-time graph OOD adaptation, and test-time graph OOD adaptation.
To provide a better understanding of the literature, we systematically categorize the existing models based on our proposed taxonomy.
arXiv Detail & Related papers (2024-10-25T02:39:56Z) - Graph Masked Autoencoder for Spatio-Temporal Graph Learning [38.085962443141206]
In urban sensing applications, effective-temporal prediction frameworks play a crucial role in traffic analysis, human mobility evaluations and crime prediction.
The presence of data noise and sparsity in spatial and temporal data presents significant challenges for existing neural network models in learning robust representations.
We propose a novel self-supervised learning paradigm for effective-temporal data augmentation.
arXiv Detail & Related papers (2024-10-14T07:33:33Z) - Graph Learning under Distribution Shifts: A Comprehensive Survey on
Domain Adaptation, Out-of-distribution, and Continual Learning [53.81365215811222]
We provide a review and summary of the latest approaches, strategies, and insights that address distribution shifts within the context of graph learning.
We categorize existing graph learning methods into several essential scenarios, including graph domain adaptation learning, graph out-of-distribution learning, and graph continual learning.
We discuss the potential applications and future directions for graph learning under distribution shifts with a systematic analysis of the current state in this field.
arXiv Detail & Related papers (2024-02-26T07:52:40Z) - Temporal Graph Representation Learning with Adaptive Augmentation
Contrastive [12.18909612212823]
Temporal graph representation learning aims to generate low-dimensional dynamic node embeddings to capture temporal information.
We propose a novel Temporal Graph representation learning with Adaptive augmentation Contrastive (TGAC) model.
Our experiments on various real networks demonstrate that the proposed model outperforms other temporal graph representation learning methods.
arXiv Detail & Related papers (2023-11-07T11:21:16Z) - Local-Global Information Interaction Debiasing for Dynamic Scene Graph
Generation [51.92419880088668]
We propose a novel DynSGG model based on multi-task learning, DynSGG-MTL, which introduces the local interaction information and global human-action interaction information.
Long-temporal human actions supervise the model to generate multiple scene graphs that conform to the global constraints and avoid the model being unable to learn the tail predicates.
arXiv Detail & Related papers (2023-08-10T01:24:25Z) - Automated Spatio-Temporal Graph Contrastive Learning [18.245433428868775]
We develop an automated-temporal augmentation scheme with a parameterized contrastive view generator.
AutoST can adapt to the heterogeneous graph with multi-view semantics well preserved.
Experiments for three downstream-temporal mining tasks on several real-world datasets demonstrate the significant performance gain.
arXiv Detail & Related papers (2023-05-06T03:52:33Z) - Spatio-Temporal Latent Graph Structure Learning for Traffic Forecasting [6.428566223253948]
We propose a new traffic forecasting framework--S-Temporal Latent Graph Structure Learning networks (ST-LGSL)
The model employs a graph based on Multilayer perceptron and K-Nearest Neighbor, which learns the latent graph topological information from the entire data.
With the dependencies-kNN based on ground-truth adjacency matrix and similarity metric in kNN, ST-LGSL aggregates the top focusing on geography and node similarity.
arXiv Detail & Related papers (2022-02-25T10:02:49Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Cyclic Graph Attentive Match Encoder (CGAME): A Novel Neural Network For
OD Estimation [8.398623478484248]
Origin-Destination Estimation plays an important role in traffic management and traffic simulation in the era of Intelligent Transportation System (ITS)
Previous model-based models face the under-determined challenge, thus desperate demand for additional assumptions and extra data exists.
We propose Cyclic Graph Attentive Matching (C-GAME) based on a novel Graph Matcher with double-layer attention mechanism.
arXiv Detail & Related papers (2021-11-26T08:57:21Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.