Spatio-Temporal Latent Graph Structure Learning for Traffic Forecasting
- URL: http://arxiv.org/abs/2202.12586v1
- Date: Fri, 25 Feb 2022 10:02:49 GMT
- Title: Spatio-Temporal Latent Graph Structure Learning for Traffic Forecasting
- Authors: Jiabin Tang, Tang Qian, Shijing Liu, Shengdong Du, Jie Hu, Tianrui Li
- Abstract summary: We propose a new traffic forecasting framework--S-Temporal Latent Graph Structure Learning networks (ST-LGSL)
The model employs a graph based on Multilayer perceptron and K-Nearest Neighbor, which learns the latent graph topological information from the entire data.
With the dependencies-kNN based on ground-truth adjacency matrix and similarity metric in kNN, ST-LGSL aggregates the top focusing on geography and node similarity.
- Score: 6.428566223253948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate traffic forecasting, the foundation of intelligent transportation
systems (ITS), has never been more significant than nowadays due to the
prosperity of the smart cities and urban computing. Recently, Graph Neural
Network truly outperforms the traditional methods. Nevertheless, the most
conventional GNN based model works well while given a pre-defined graph
structure. And the existing methods of defining the graph structures focus
purely on spatial dependencies and ignored the temporal correlation. Besides,
the semantics of the static pre-defined graph adjacency applied during the
whole training progress is always incomplete, thus overlooking the latent
topologies that may fine-tune the model. To tackle these challenges, we
proposed a new traffic forecasting framework--Spatio-Temporal Latent Graph
Structure Learning networks (ST-LGSL). More specifically, the model employed a
graph generator based on Multilayer perceptron and K-Nearest Neighbor, which
learns the latent graph topological information from the entire data
considering both spatial and temporal dynamics. Furthermore, with the
initialization of MLP-kNN based on ground-truth adjacency matrix and similarity
metric in kNN, ST-LGSL aggregates the topologies focusing on geography and node
similarity. Additionally, the generated graphs act as the input of
spatio-temporal prediction module combined with the Diffusion Graph
Convolutions and Gated Temporal Convolutions Networks. Experimental results on
two benchmarking datasets in real world demonstrate that ST-LGSL outperforms
various types of state-of-art baselines.
Related papers
- Graph Pruning Based Spatial and Temporal Graph Convolutional Network with Transfer Learning for Traffic Prediction [0.0]
This study proposes a novel Spatial-temporal Convolutional Network (TL-GPSTGN) based on graph pruning and transfer learning framework.
The results demonstrate the exceptional predictive accuracy of TL-GPSTGN on a single dataset, as well as its robust migration performance across different datasets.
arXiv Detail & Related papers (2024-09-25T00:59:23Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
Current state-of-the-art graph neural network (GNN)-based forecasting methods usually require both graph networks (e.g., GCN) and temporal networks (e.g., LSTM) to capture inter-series (spatial) dynamics and intra-series (temporal) dependencies, respectively.
We propose a novel Fourier Graph Neural Network (FourierGNN) by stacking our proposed Fourier Graph Operator (FGO) to perform matrix multiplications in Fourier space.
Our experiments on seven datasets have demonstrated superior performance with higher efficiency and fewer parameters compared with state-of-the-
arXiv Detail & Related papers (2023-11-10T17:13:26Z) - Mending of Spatio-Temporal Dependencies in Block Adjacency Matrix [3.529869282529924]
We propose a novel end-to-end learning architecture designed to mend the temporal dependencies, resulting in a well-connected graph.
Our methodology demonstrates superior performance on benchmark datasets, such as SurgVisDom and C2D2.
arXiv Detail & Related papers (2023-10-04T06:42:33Z) - STG4Traffic: A Survey and Benchmark of Spatial-Temporal Graph Neural Networks for Traffic Prediction [9.467593700532401]
This paper provides a systematic review of graph learning strategies and commonly used graph convolution algorithms.
We then conduct a comprehensive analysis of the strengths and weaknesses of recently proposed spatial-temporal graph network models.
We build a study called STG4Traffic using the deep learning framework PyTorch to establish a standardized and scalable benchmark on two types of traffic datasets.
arXiv Detail & Related papers (2023-07-02T06:56:52Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
Space-time graph neural networks (ST-GNNs) learn efficient graph representations of time-varying data.
In this paper we revisit the properties of ST-GNNs and prove that they are stable to graph stabilitys.
Our analysis suggests that ST-GNNs are suitable for transfer learning on time-varying graphs.
arXiv Detail & Related papers (2022-10-28T16:59:51Z) - Graph-Time Convolutional Neural Networks: Architecture and Theoretical
Analysis [12.995632804090198]
We introduce Graph-Time Convolutional Neural Networks (GTCNNs) as principled architecture to aid learning.
The approach can work with any type of product graph and we also introduce a parametric graph to learn also the producttemporal coupling.
Extensive numerical results on benchmark corroborate our findings and show the GTCNN compares favorably with state-of-the-art solutions.
arXiv Detail & Related papers (2022-06-30T10:20:52Z) - Spatial-Temporal Adaptive Graph Convolution with Attention Network for
Traffic Forecasting [4.1700160312787125]
We propose a novel network, Spatial-Temporal Adaptive graph convolution with Attention Network (STAAN) for traffic forecasting.
Firstly, we adopt an adaptive dependency matrix instead of using a pre-defined matrix during GCN processing to infer the inter-dependencies among nodes.
Secondly, we integrate PW-attention based on graph attention network which is designed for global dependency, and GCN as spatial block.
arXiv Detail & Related papers (2022-06-07T09:08:35Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.