論文の概要: A deep learning framework for solution and discovery in solid mechanics
- arxiv url: http://arxiv.org/abs/2003.02751v2
- Date: Wed, 6 May 2020 20:42:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 04:41:15.741160
- Title: A deep learning framework for solution and discovery in solid mechanics
- Title(参考訳): ソリッドメカニクスにおける解法と発見のためのディープラーニングフレームワーク
- Authors: Ehsan Haghighat, Maziar Raissi, Adrian Moure, Hector Gomez, Ruben
Juanes
- Abstract要約: 本稿では,物理情報ニューラルネットワーク(PINN)と呼ばれるディープラーニングのクラスを,固体力学の学習と発見に応用する。
本稿では, 運動量バランスと弾性の関係をPINNに組み込む方法について解説し, 線形弾性への応用について詳細に検討する。
- 参考スコア(独自算出の注目度): 1.4699455652461721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the application of a class of deep learning, known as Physics
Informed Neural Networks (PINN), to learning and discovery in solid mechanics.
We explain how to incorporate the momentum balance and constitutive relations
into PINN, and explore in detail the application to linear elasticity, and
illustrate its extension to nonlinear problems through an example that
showcases von~Mises elastoplasticity. While common PINN algorithms are based on
training one deep neural network (DNN), we propose a multi-network model that
results in more accurate representation of the field variables. To validate the
model, we test the framework on synthetic data generated from analytical and
numerical reference solutions. We study convergence of the PINN model, and show
that Isogeometric Analysis (IGA) results in superior accuracy and convergence
characteristics compared with classic low-order Finite Element Method (FEM). We
also show the applicability of the framework for transfer learning, and find
vastly accelerated convergence during network re-training. Finally, we find
that honoring the physics leads to improved robustness: when trained only on a
few parameters, we find that the PINN model can accurately predict the solution
for a wide range of parameters new to the network---thus pointing to an
important application of this framework to sensitivity analysis and surrogate
modeling.
- Abstract(参考訳): 本稿では,物理情報ニューラルネットワーク(PINN)と呼ばれるディープラーニングのクラスを,固体力学の学習と発見に応用する。
運動量バランスと構成的関係をPINNに組み込む方法を説明し、線形弾性への応用を詳細に検討し、von–Misesエラスト塑性を示す例を通して非線形問題への拡張を説明する。
一般的なPINNアルゴリズムは1つのディープニューラルネットワーク(DNN)のトレーニングに基づいているが、フィールド変数をより正確に表現できるマルチネットワークモデルを提案する。
モデルを検証するために,解析的および数値的参照解から生成した合成データを用いた枠組みを検証した。
ピンモデルの収束について検討し, 等geometric analysis (iga) が従来の低次有限要素法 (fem) と比較して精度と収束特性に優れることを示した。
また,トランスファー学習のフレームワークの適用可能性を示し,ネットワーク再トレーニング時の収束を著しく促進した。
最後に、物理を尊重することで堅牢性が向上し、いくつかのパラメータのみをトレーニングすると、PINNモデルはネットワークに新たに導入された幅広いパラメータの解を正確に予測できることがわかった。
関連論文リスト
- Adapting Physics-Informed Neural Networks for Bifurcation Detection in Ecological Migration Models [0.16442870218029523]
本研究では,生物移動モデルにおける分岐現象の解析への物理情報ニューラルネットワーク(PINN)の適用について検討する。
拡散-回避-反応方程式の基本原理を深層学習技術と組み合わせることで、種移動ダイナミクスの複雑さに対処する。
論文 参考訳(メタデータ) (2024-09-01T08:00:31Z) - An Efficient Approach to Regression Problems with Tensor Neural Networks [5.345144592056051]
本稿では、非パラメトリック回帰問題に対処するテンソルニューラルネットワーク(TNN)を提案する。
TNNは従来のFeed-Forward Networks (FFN) や Radial Basis Function Networks (RBN) よりも優れた性能を示している。
このアプローチにおける重要な革新は、統計回帰とTNNフレームワーク内の数値積分の統合である。
論文 参考訳(メタデータ) (2024-06-14T03:38:40Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Improving Parametric Neural Networks for High-Energy Physics (and
Beyond) [0.0]
本研究の目的は,現実世界の使用状況に照らして,パラメトリックニューラルネットワーク(pNN)ネットワークの理解を深めることである。
本稿では,新しいパラメータ化ニューラルネットワークアーキテクチャであるAffinePNNを提案する。
我々は、その不均衡バージョン(HEPMASS-IMB)に沿って、HEPMASSデータセット上で、我々のモデルを広範囲に評価する。
論文 参考訳(メタデータ) (2022-02-01T14:18:43Z) - Fusing the Old with the New: Learning Relative Camera Pose with
Geometry-Guided Uncertainty [91.0564497403256]
本稿では,ネットワークトレーニング中の2つの予測系間の確率的融合を含む新しい枠組みを提案する。
本ネットワークは,異なる対応間の強い相互作用を強制することにより学習を駆動する自己追跡グラフニューラルネットワークを特徴とする。
学習に適したモーションパーマリゼーションを提案し、難易度の高いDeMoNおよびScanNetデータセットで最新のパフォーマンスを達成できることを示します。
論文 参考訳(メタデータ) (2021-04-16T17:59:06Z) - Stochastic analysis of heterogeneous porous material with modified
neural architecture search (NAS) based physics-informed neural networks using
transfer learning [0.0]
修正ニューラルアーキテクチャ探索法(NAS)に基づく物理インフォームド深層学習モデルを提案する。
高度不均質帯水層における地下水流動シミュレーションのベンチマークを行うため, 三次元流れモデルを構築した。
論文 参考訳(メタデータ) (2020-10-03T19:57:54Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。