論文の概要: ExpPoint-MAE: Better interpretability and performance for self-supervised point cloud transformers
- arxiv url: http://arxiv.org/abs/2306.10798v3
- Date: Wed, 10 Apr 2024 11:42:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 19:45:16.787916
- Title: ExpPoint-MAE: Better interpretability and performance for self-supervised point cloud transformers
- Title(参考訳): ExpPoint-MAE: 自己管理型クラウドトランスの解釈性と性能向上
- Authors: Ioannis Romanelis, Vlassis Fotis, Konstantinos Moustakas, Adrian Munteanu,
- Abstract要約: マスク付き自動符号化の有効性を事前学習方式として評価し,代替手段としてMomentum Contrastを探索する。
我々は,トランスフォーマーが意味論的に意味のある領域への参加を学ぶことを観察し,事前学習が基礎となる幾何学の理解を深めることを示す。
- 参考スコア(独自算出の注目度): 7.725095281624494
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we delve into the properties of transformers, attained through self-supervision, in the point cloud domain. Specifically, we evaluate the effectiveness of Masked Autoencoding as a pretraining scheme, and explore Momentum Contrast as an alternative. In our study we investigate the impact of data quantity on the learned features, and uncover similarities in the transformer's behavior across domains. Through comprehensive visualiations, we observe that the transformer learns to attend to semantically meaningful regions, indicating that pretraining leads to a better understanding of the underlying geometry. Moreover, we examine the finetuning process and its effect on the learned representations. Based on that, we devise an unfreezing strategy which consistently outperforms our baseline without introducing any other modifications to the model or the training pipeline, and achieve state-of-the-art results in the classification task among transformer models.
- Abstract(参考訳): 本稿では,点クラウド領域における自己超越によって達成された変圧器の特性について考察する。
具体的には,Masked Autoencoding の有効性を事前学習方式として評価し,Momentum Contrast を代替として検討する。
本研究では,データ量が学習特徴に与える影響について検討し,変圧器のドメイン間挙動の類似性を明らかにする。
包括的可視化を通して,トランスフォーマーは意味論的意味のある領域への参加を学習し,事前学習が基礎となる幾何学の理解を深めることを示す。
さらに,ファインタニングのプロセスとその学習表現への影響について検討した。
これに基づいて、モデルやトレーニングパイプラインに他の変更を加えることなく、ベースラインを一貫して上回り、トランスフォーマーモデル間の分類タスクにおいて最先端の結果を得る、凍結防止戦略を考案する。
関連論文リスト
- Unveil Benign Overfitting for Transformer in Vision: Training Dynamics, Convergence, and Generalization [88.5582111768376]
本研究では, ソフトマックスを用いた自己保持層と, 勾配勾配下での完全連結層からなるトランスフォーマーの最適化について検討した。
この結果から,データモデルにおける信号対雑音比に基づいて,小さなテストエラー位相と大規模なテストエラー状態とを区別できるシャープ条件を確立した。
論文 参考訳(メタデータ) (2024-09-28T13:24:11Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
低ランク計算としての効率的な数値学習と推論アルゴリズムはトランスフォーマーに基づく適応学習に優れた性能を持つことを示す。
我々は、等級モデルが適応性を改善しながら一般化にどのように影響するかを分析する。
適切なマグニチュードベースのテストは,テストパフォーマンスに多少依存している,と結論付けています。
論文 参考訳(メタデータ) (2024-06-24T23:00:58Z) - Affine transformation estimation improves visual self-supervised
learning [4.40560654491339]
本研究では,アフィン変換の予測表現を制約するモジュールを追加することにより,学習プロセスの性能と効率が向上することを示す。
我々は、様々な近代的な自己監督モデルで実験を行い、全てのケースで性能改善を見る。
論文 参考訳(メタデータ) (2024-02-14T10:32:58Z) - Enhancing cross-domain detection: adaptive class-aware contrastive
transformer [15.666766743738531]
対象領域の不十分なラベルは、クラス不均衡とモデル性能劣化の問題を悪化させる。
逆学習と平均教師フレームワークに基づくクラス対応クロスドメイン検出変換器を提案する。
論文 参考訳(メタデータ) (2024-01-24T07:11:05Z) - Emergent Agentic Transformer from Chain of Hindsight Experience [96.56164427726203]
簡単なトランスフォーマーベースモデルが時間差と模倣学習に基づくアプローチの両方と競合することを示す。
単純なトランスフォーマーベースのモデルが時間差と模倣学習ベースのアプローチの両方で競合するのはこれが初めてである。
論文 参考訳(メタデータ) (2023-05-26T00:43:02Z) - Image Deblurring by Exploring In-depth Properties of Transformer [86.7039249037193]
我々は、事前訓練された視覚変換器(ViT)から抽出した深い特徴を活用し、定量的な測定値によって測定された性能を犠牲にすることなく、回復した画像のシャープ化を促進する。
得られた画像と対象画像の変換器特徴を比較することにより、事前学習された変換器は、高解像度のぼやけた意味情報を提供する。
特徴をベクトルとみなし、抽出された画像から抽出された表現とユークリッド空間における対象表現との差を計算する。
論文 参考訳(メタデータ) (2023-03-24T14:14:25Z) - XAI for Transformers: Better Explanations through Conservative
Propagation [60.67748036747221]
変換器の勾配は局所的にのみ関数を反映しており、入力特徴の予測への寄与を確実に識別できないことを示す。
我々の提案は、よく確立されたLPP法のトランスフォーマーへの適切な拡張と見なすことができる。
論文 参考訳(メタデータ) (2022-02-15T10:47:11Z) - Efficient Vision Transformers via Fine-Grained Manifold Distillation [96.50513363752836]
視覚変換器のアーキテクチャは多くのコンピュータビジョンタスクで異常な性能を示した。
ネットワーク性能は向上するが、トランスフォーマーはより多くの計算資源を必要とすることが多い。
本稿では,教師のトランスフォーマーから,画像と分割パッチの関係を通して有用な情報を抽出することを提案する。
論文 参考訳(メタデータ) (2021-07-03T08:28:34Z) - Point Cloud Learning with Transformer [2.3204178451683264]
我々は,マルチレベルマルチスケールポイントトランスフォーマ(mlmspt)と呼ばれる新しいフレームワークを提案する。
具体的には、点ピラミッド変換器を用いて、多様な分解能やスケールを持つ特徴をモデル化する。
マルチレベルトランスモジュールは、各スケールの異なるレベルからコンテキスト情報を集約し、それらの相互作用を強化するように設計されている。
論文 参考訳(メタデータ) (2021-04-28T08:39:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。