論文の概要: Eigenpatches -- Adversarial Patches from Principal Components
- arxiv url: http://arxiv.org/abs/2306.10963v1
- Date: Mon, 19 Jun 2023 14:27:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 17:26:44.983425
- Title: Eigenpatches -- Adversarial Patches from Principal Components
- Title(参考訳): eigenpatches -- 主コンポーネントからの反対パッチ
- Authors: Jens Bayer and Stefan Becker and David M\"unch and Michael Arens
- Abstract要約: 本稿では,375個のパッチを解析することにより,計算コストの問題に対処する。
結果として生じる"固有パッチ"の線形結合は、オブジェクト検出をうまく騙すために使用することができる。
- 参考スコア(独自算出の注目度): 6.920276126310229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial patches are still a simple yet powerful white box attack that can
be used to fool object detectors by suppressing possible detections. The
patches of these so-called evasion attacks are computational expensive to
produce and require full access to the attacked detector. This paper addresses
the problem of computational expensiveness by analyzing 375 generated patches,
calculating the principal components of these and show, that linear
combinations of the resulting "eigenpatches" can be used to fool object
detections successfully.
- Abstract(参考訳): 敵のパッチは、まだシンプルで強力なホワイトボックス攻撃であり、検出の可能性を抑えることで物体検出器を騙すことができる。
これらのいわゆる回避攻撃のパッチは計算コストが高く、攻撃された検出器への完全なアクセスを必要とする。
本稿では,375個の生成パッチを解析し,それらの主成分を計算し,その結果の「固有パッチ」の線形結合により物体検出をうまく騙すことができることを示す。
関連論文リスト
- Adversarial Attacks on Transformers-Based Malware Detectors [0.0]
署名ベースのマルウェア検出装置は、悪性な実行可能コードのわずかな変更でさえこれらの署名ベースの検出装置をバイパスできるため、不十分であることが証明されている。
我々の研究は、敵の攻撃に対して、最先端のマルウェア検出装置の脆弱性を探究することを目的としている。
トランスフォーマーベースのマルウェア検出装置を訓練し、敵の攻撃を行い、23.9%の誤分類率で、この誤分類率を半分に抑える防衛策を提案する。
論文 参考訳(メタデータ) (2022-10-01T22:23:03Z) - ObjectSeeker: Certifiably Robust Object Detection against Patch Hiding
Attacks via Patch-agnostic Masking [95.6347501381882]
物体探知機は物理的世界のパッチ隠蔽攻撃に弱いことが判明した。
我々は,堅牢なオブジェクト検出器を構築するためのフレームワークとしてObjectSeekerを提案する。
論文 参考訳(メタデータ) (2022-02-03T19:34:25Z) - Segment and Complete: Defending Object Detectors against Adversarial
Patch Attacks with Robust Patch Detection [142.24869736769432]
敵のパッチ攻撃は最先端の物体検出器に深刻な脅威をもたらす。
パッチ攻撃に対して物体検出器を防御するフレームワークであるSegment and Complete Defense (SAC)を提案する。
SACは、物理的パッチ攻撃の標的攻撃成功率を著しく低減できることを示す。
論文 参考訳(メタデータ) (2021-12-08T19:18:48Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - PatchGuard++: Efficient Provable Attack Detection against Adversarial
Patches [28.94435153159868]
逆パッチは、制限領域内の画像画素を任意に操作して、モデル誤分類を誘導することができる。
最近の堅牢な防御は、通常、小さな受容フィールドを持つCNNを使用することで、パッチガードフレームワークに従います。
PatchGuardをPatchGuard++に拡張し、敵のパッチ攻撃を確実に検出し、証明可能な堅牢な精度とクリーンな精度を向上します。
論文 参考訳(メタデータ) (2021-04-26T14:22:33Z) - DetectorGuard: Provably Securing Object Detectors against Localized
Patch Hiding Attacks [28.94435153159868]
最先端のオブジェクト検出器は、局所的なパッチ隠蔽攻撃に対して脆弱である。
我々は,デザイナガードと呼ばれる局所的なパッチ隠蔽攻撃に対して,確実に堅牢な検出器を構築するための,最初の汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-05T02:02:21Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
本稿では,システムの物理的特性に反する逆スプーフ信号を生成するための新しい枠組みを提案する。
トップセキュリティカンファレンスで公表された4つの異常検知器を分析した。
論文 参考訳(メタデータ) (2020-12-07T11:02:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - Detection as Regression: Certified Object Detection by Median Smoothing [50.89591634725045]
この研究は、ランダム化平滑化による認定分類の最近の進歩によって動機付けられている。
我々は、$ell$-bounded攻撃に対するオブジェクト検出のための、最初のモデル非依存、トレーニング不要、認定された防御条件を得る。
論文 参考訳(メタデータ) (2020-07-07T18:40:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。