Differentially Private Over-the-Air Federated Learning Over MIMO Fading
Channels
- URL: http://arxiv.org/abs/2306.10982v3
- Date: Mon, 25 Dec 2023 17:27:55 GMT
- Title: Differentially Private Over-the-Air Federated Learning Over MIMO Fading
Channels
- Authors: Hang Liu, Jia Yan, and Ying-Jun Angela Zhang
- Abstract summary: Federated learning (FL) enables edge devices to collaboratively train machine learning models.
While over-the-air model aggregation improves communication efficiency, uploading models to an edge server over wireless networks can pose privacy risks.
We show that FL model communication with a multiple-antenna server amplifies privacy leakage.
- Score: 24.534729104570417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) enables edge devices to collaboratively train machine
learning models, with model communication replacing direct data uploading.
While over-the-air model aggregation improves communication efficiency,
uploading models to an edge server over wireless networks can pose privacy
risks. Differential privacy (DP) is a widely used quantitative technique to
measure statistical data privacy in FL. Previous research has focused on
over-the-air FL with a single-antenna server, leveraging communication noise to
enhance user-level DP. This approach achieves the so-called "free DP" by
controlling transmit power rather than introducing additional DP-preserving
mechanisms at devices, such as adding artificial noise. In this paper, we study
differentially private over-the-air FL over a multiple-input multiple-output
(MIMO) fading channel. We show that FL model communication with a
multiple-antenna server amplifies privacy leakage as the multiple-antenna
server employs separate receive combining for model aggregation and information
inference. Consequently, relying solely on communication noise, as done in the
multiple-input single-output system, cannot meet high privacy requirements, and
a device-side privacy-preserving mechanism is necessary for optimal DP design.
We analyze the learning convergence and privacy loss of the studied FL system
and propose a transceiver design algorithm based on alternating optimization.
Numerical results demonstrate that the proposed method achieves a better
privacy-learning trade-off compared to prior work.
Related papers
- DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning using Packed Secret Sharing [51.336015600778396]
Federated Learning (FL) has gained lots of traction recently, both in industry and academia.
In FL, a machine learning model is trained using data from various end-users arranged in committees across several rounds.
Since such data can often be sensitive, a primary challenge in FL is providing privacy while still retaining utility of the model.
arXiv Detail & Related papers (2024-10-21T16:25:14Z) - Binary Federated Learning with Client-Level Differential Privacy [7.854806519515342]
Federated learning (FL) is a privacy-preserving collaborative learning framework.
Existing FL systems typically adopt Federated Average (FedAvg) as the training algorithm.
We propose a communication-efficient FL training algorithm with differential privacy guarantee.
arXiv Detail & Related papers (2023-08-07T06:07:04Z) - Differentially Private Wireless Federated Learning Using Orthogonal
Sequences [56.52483669820023]
We propose a privacy-preserving uplink over-the-air computation (AirComp) method, termed FLORAS.
We prove that FLORAS offers both item-level and client-level differential privacy guarantees.
A new FL convergence bound is derived which, combined with the privacy guarantees, allows for a smooth tradeoff between the achieved convergence rate and differential privacy levels.
arXiv Detail & Related papers (2023-06-14T06:35:10Z) - Communication and Energy Efficient Wireless Federated Learning with
Intrinsic Privacy [16.305837225117603]
Federated Learning (FL) is a collaborative learning framework that enables edge devices to collaboratively learn a global model while keeping raw data locally.
We propose a novel wireless FL scheme called private edge learning with spars (PFELS) to provide client-level DP guarantee with intrinsic channel noise.
arXiv Detail & Related papers (2023-04-15T03:04:11Z) - Over-the-Air Federated Learning with Privacy Protection via Correlated
Additive Perturbations [57.20885629270732]
We consider privacy aspects of wireless federated learning with Over-the-Air (OtA) transmission of gradient updates from multiple users/agents to an edge server.
Traditional perturbation-based methods provide privacy protection while sacrificing the training accuracy.
In this work, we aim at minimizing privacy leakage to the adversary and the degradation of model accuracy at the edge server.
arXiv Detail & Related papers (2022-10-05T13:13:35Z) - On Differential Privacy for Federated Learning in Wireless Systems with
Multiple Base Stations [90.53293906751747]
We consider a federated learning model in a wireless system with multiple base stations and inter-cell interference.
We show the convergence behavior of the learning process by deriving an upper bound on its optimality gap.
Our proposed scheduler improves the average accuracy of the predictions compared with a random scheduler.
arXiv Detail & Related papers (2022-08-25T03:37:11Z) - Don't Generate Me: Training Differentially Private Generative Models
with Sinkhorn Divergence [73.14373832423156]
We propose DP-Sinkhorn, a novel optimal transport-based generative method for learning data distributions from private data with differential privacy.
Unlike existing approaches for training differentially private generative models, we do not rely on adversarial objectives.
arXiv Detail & Related papers (2021-11-01T18:10:21Z) - Reconfigurable Intelligent Surface Enabled Federated Learning: A Unified
Communication-Learning Design Approach [30.1988598440727]
We develop a unified communication-learning optimization problem to jointly optimize device selection, over-the-air transceiver design, and RIS configuration.
Numerical experiments show that the proposed design achieves substantial learning accuracy improvement compared with the state-of-the-art approaches.
arXiv Detail & Related papers (2020-11-20T08:54:13Z) - Federated Learning with Sparsification-Amplified Privacy and Adaptive
Optimization [27.243322019117144]
Federated learning (FL) enables distributed agents to collaboratively learn a centralized model without sharing their raw data with each other.
We propose a new FL framework with sparsification-amplified privacy.
Our approach integrates random sparsification with gradient perturbation on each agent to amplify privacy guarantee.
arXiv Detail & Related papers (2020-08-01T20:22:57Z) - Harnessing Wireless Channels for Scalable and Privacy-Preserving
Federated Learning [56.94644428312295]
Wireless connectivity is instrumental in enabling federated learning (FL)
Channel randomnessperturbs each worker inversions model update while multiple workers updates incur significant interference on bandwidth.
In A-FADMM, all workers upload their model updates to the parameter server using a single channel via analog transmissions.
This not only saves communication bandwidth, but also hides each worker's exact model update trajectory from any eavesdropper.
arXiv Detail & Related papers (2020-07-03T16:31:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.