論文の概要: Effect-Invariant Mechanisms for Policy Generalization
- arxiv url: http://arxiv.org/abs/2306.10983v1
- Date: Mon, 19 Jun 2023 14:50:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 17:29:25.349383
- Title: Effect-Invariant Mechanisms for Policy Generalization
- Title(参考訳): 政策一般化における効果不変メカニズム
- Authors: Sorawit Saengkyongam, Niklas Pfister, Predrag Klasnja, Susan Murphy,
Jonas Peters
- Abstract要約: 不変条件分布を利用して、目に見えない環境をより一般化するモデルを学ぶことが提案されている。
効果不変性(英語版)と呼ばれる完全な不変性の緩和を導入し、ゼロショットポリシーの一般化には適切な仮定の下で十分であることを示す。
シミュレーションデータと移動体保健介入データセットを用いて実験結果を提示し,本手法の有効性を実証した。
- 参考スコア(独自算出の注目度): 3.701112941066256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Policy learning is an important component of many real-world learning
systems. A major challenge in policy learning is how to adapt efficiently to
unseen environments or tasks. Recently, it has been suggested to exploit
invariant conditional distributions to learn models that generalize better to
unseen environments. However, assuming invariance of entire conditional
distributions (which we call full invariance) may be too strong of an
assumption in practice. In this paper, we introduce a relaxation of full
invariance called effect-invariance (e-invariance for short) and prove that it
is sufficient, under suitable assumptions, for zero-shot policy generalization.
We also discuss an extension that exploits e-invariance when we have a small
sample from the test environment, enabling few-shot policy generalization. Our
work does not assume an underlying causal graph or that the data are generated
by a structural causal model; instead, we develop testing procedures to test
e-invariance directly from data. We present empirical results using simulated
data and a mobile health intervention dataset to demonstrate the effectiveness
of our approach.
- Abstract(参考訳): 政策学習は多くの現実世界の学習システムの重要な要素である。
ポリシー学習における大きな課題は、未知の環境やタスクに効率的に適応する方法である。
近年,不変条件分布を活用して,未知環境に一般化したモデルを学ぶことが提案されている。
しかし、条件分布全体の不変性(フル不変性と呼ぶ)を仮定すると、実際には仮定が強すぎるかもしれない。
本稿では,効果不変性(e-invariance,略してe-invariance)と呼ばれる完全不変性の緩和を導入する。
また、テスト環境から小さなサンプルを得た場合、e-invarianceを利用する拡張についても論じる。
我々の研究は、基礎となる因果グラフや、そのデータが構造的因果モデルによって生成されると仮定していない。
本手法の有効性を示すために,シミュレーションデータとモバイルヘルス介入データセットを用いて実験結果を示す。
関連論文リスト
- Optimal Classification under Performative Distribution Shift [13.508249764979075]
本稿では,動作効果をプッシュフォワード尺度としてモデル化した新しい視点を提案する。
我々は、新しい仮定のセットの下で、パフォーマンスリスクの凸性を証明する。
また, 性能リスクの最小化を min-max 変動問題として再定義することにより, 逆向きの頑健な分類との関係を確立する。
論文 参考訳(メタデータ) (2024-11-04T12:20:13Z) - The Implicit Bias of Heterogeneity towards Invariance: A Study of Multi-Environment Matrix Sensing [9.551225697705199]
本稿では,不均一なデータに対するグラディエント・ディキセント(SGD)の暗黙バイアスについて検討し,その暗黙バイアスがモデル学習を不変解へと導くことを示す。
具体的には、各環境において、信号が(i)全環境間で共有される低ランク不変部分と(ii)環境依存のスプリアス成分とを含む多環境低ランク行列センシング問題について理論的に検討する。
重要な洞察は、明示的な正規化を伴わずに各環境で大きなステップサイズの大バッチSGDを逐次使用するだけで、不均一性に起因する振動は、モデル学習の急激なシグナルを確実に阻止することができることである。
論文 参考訳(メタデータ) (2024-03-03T07:38:24Z) - Domain-Specific Risk Minimization for Out-of-Distribution Generalization [104.17683265084757]
まず、適応性ギャップを明示的に考慮した一般化境界を確立する。
本稿では,目標に対するより良い仮説の選択を導くための効果的なギャップ推定法を提案する。
もう1つの方法は、オンラインターゲットサンプルを用いてモデルパラメータを適応させることにより、ギャップを最小化することである。
論文 参考訳(メタデータ) (2022-08-18T06:42:49Z) - Equivariance and Invariance Inductive Bias for Learning from
Insufficient Data [65.42329520528223]
不十分なデータがモデルを、通常テストとは異なる限られたトレーニング環境にバイアスしやすくする理由が示されています。
従来のIRMにおける環境アノテーションの欠如を効果的に解決するクラスワイド不変リスク最小化(IRM)を提案する。
論文 参考訳(メタデータ) (2022-07-25T15:26:19Z) - Predicting Out-of-Domain Generalization with Neighborhood Invariance [59.05399533508682]
局所変換近傍における分類器の出力不変性の尺度を提案する。
私たちの測度は計算が簡単で、テストポイントの真のラベルに依存しません。
画像分類,感情分析,自然言語推論のベンチマーク実験において,我々の測定値と実際のOOD一般化との間に強い相関関係を示す。
論文 参考訳(メタデータ) (2022-07-05T14:55:16Z) - Counterfactual Invariance to Spurious Correlations: Why and How to Pass
Stress Tests [87.60900567941428]
素早い相関」とは、アナリストが重要とすべきでないと考える入力データのある側面に対するモデルの依存である。
機械学習では、これらにはノウ・イ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ」という特徴がある。
因果推論ツールを用いたストレステストについて検討した。
論文 参考訳(メタデータ) (2021-05-31T14:39:38Z) - Nonlinear Invariant Risk Minimization: A Causal Approach [5.63479133344366]
非線形環境下での分布外一般化を可能にする学習パラダイムを提案する。
我々は、非常に単純な変換までデータ表現の識別性を示す。
合成データと実世界のデータセットの両方に関する広範な実験は、我々のアプローチが様々なベースラインメソッドを大きく上回っていることを示している。
論文 参考訳(メタデータ) (2021-02-24T15:38:41Z) - What causes the test error? Going beyond bias-variance via ANOVA [21.359033212191218]
現代の機械学習手法は、しばしば過度にパラメータ化され、細かいレベルでのデータへの適応を可能にする。
最近の研究は、なぜ過度なパラメータ化が一般化に役立つのかをより深く理解することを目的としている。
本研究では, 差分解析(ANOVA)を用いて, テスト誤差の分散を対称的に分解する手法を提案する。
論文 参考訳(メタデータ) (2020-10-11T05:21:13Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
多くの機械学習シナリオにおけるデフォルトの前提は、トレーニングとテストサンプルは同じ確率分布から引き出されることである。
予測モデルと関連する重みを1つの最適化で共同で学習する新しいワンステップアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-08T11:35:47Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。