論文の概要: The Implicit Bias of Heterogeneity towards Invariance: A Study of Multi-Environment Matrix Sensing
- arxiv url: http://arxiv.org/abs/2403.01420v3
- Date: Tue, 19 Nov 2024 06:10:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:33:00.277270
- Title: The Implicit Bias of Heterogeneity towards Invariance: A Study of Multi-Environment Matrix Sensing
- Title(参考訳): 不均一性に対する不均一性の因果的バイアス:マルチ環境マトリックスセンシングに関する研究
- Authors: Yang Xu, Yihong Gu, Cong Fang,
- Abstract要約: 本稿では,不均一なデータに対するグラディエント・ディキセント(SGD)の暗黙バイアスについて検討し,その暗黙バイアスがモデル学習を不変解へと導くことを示す。
具体的には、各環境において、信号が(i)全環境間で共有される低ランク不変部分と(ii)環境依存のスプリアス成分とを含む多環境低ランク行列センシング問題について理論的に検討する。
重要な洞察は、明示的な正規化を伴わずに各環境で大きなステップサイズの大バッチSGDを逐次使用するだけで、不均一性に起因する振動は、モデル学習の急激なシグナルを確実に阻止することができることである。
- 参考スコア(独自算出の注目度): 9.551225697705199
- License:
- Abstract: Models are expected to engage in invariance learning, which involves distinguishing the core relations that remain consistent across varying environments to ensure the predictions are safe, robust and fair. While existing works consider specific algorithms to realize invariance learning, we show that model has the potential to learn invariance through standard training procedures. In other words, this paper studies the implicit bias of Stochastic Gradient Descent (SGD) over heterogeneous data and shows that the implicit bias drives the model learning towards an invariant solution. We call the phenomenon the implicit invariance learning. Specifically, we theoretically investigate the multi-environment low-rank matrix sensing problem where in each environment, the signal comprises (i) a lower-rank invariant part shared across all environments; and (ii) a significantly varying environment-dependent spurious component. The key insight is, through simply employing the large step size large-batch SGD sequentially in each environment without any explicit regularization, the oscillation caused by heterogeneity can provably prevent model learning spurious signals. The model reaches the invariant solution after certain iterations. In contrast, model learned using pooled SGD over all data would simultaneously learn both the invariant and spurious signals. Overall, we unveil another implicit bias that is a result of the symbiosis between the heterogeneity of data and modern algorithms, which is, to the best of our knowledge, first in the literature.
- Abstract(参考訳): モデルは、予測が安全で堅牢で公平であることを保証するために、様々な環境において一貫性のあるコア関係を区別することを含む、不変学習に関与することが期待されている。
既存の研究では、不変学習を実現するための特定のアルゴリズムが検討されているが、モデルが標準学習手順を通じて不変学習を学習する可能性があることが示されている。
言い換えれば、不均一なデータに対する確率勾配 Descent (SGD) の暗黙バイアスについて検討し、その暗黙バイアスがモデル学習を不変解へと導くことを示す。
私たちはこの現象を暗黙の不変学習と呼んでいる。
具体的には、各環境において信号が構成されるマルチ環境低ランク行列センシング問題について理論的に検討する。
(i)すべての環境に共通する低階不変部分
(ii) 環境依存的な刺激成分の顕著な変化。
重要な洞察は、明示的な正規化を伴わずに各環境で大きなステップサイズの大バッチSGDを逐次使用するだけで、不均一性に起因する振動は、モデル学習の急激なシグナルを確実に阻止することができることである。
モデルは、ある反復の後に不変解に達する。
対照的に、全てのデータに対してプールされたSGDを用いて学習したモデルは、不変信号と刺激信号の両方を同時に学習する。
全体として、我々は、データの不均一性と現代のアルゴリズムの共生の結果である別の暗黙のバイアスを、まず文献で、私たちの知識の最も良いところへと明らかにした。
関連論文リスト
- Mechanism learning: Reverse causal inference in the presence of multiple unknown confounding through front-door causal bootstrapping [0.8901073744693314]
機械学習(ML)予測モデルの最大の制限は、変数間の因果関係ではなく、関連性を取り戻すことである。
本稿では,前向きの因果ブートストラップを用いて観測データを分解する機構学習を提案する。
提案手法は,完全合成,半合成,実世界のデータセットを用いて,信頼性,不偏性,因果的ML予測器を検出できることを実証する。
論文 参考訳(メタデータ) (2024-10-26T03:34:55Z) - Sample, estimate, aggregate: A recipe for causal discovery foundation models [28.116832159265964]
我々は、古典因果探索アルゴリズムの出力からより大きな因果グラフを予測することを学ぶ教師付きモデルを訓練する。
我々のアプローチは、古典的手法の出力における典型的なエラーがデータセット間で比較できるという観察によって実現されている。
実データおよび合成データに関する実験では、このモデルが不特定性や分布シフトに直面して高い精度を維持することを示した。
論文 参考訳(メタデータ) (2024-02-02T21:57:58Z) - Theoretical Characterization of the Generalization Performance of
Overfitted Meta-Learning [70.52689048213398]
本稿では,ガウス的特徴を持つ線形回帰モデルの下で,過剰適合型メタラーニングの性能について検討する。
シングルタスク線形回帰には存在しない新しい興味深い性質が見つかる。
本分析は,各訓練課題における基礎的真理のノイズや多様性・変動が大きい場合には,良心過剰がより重要かつ容易に観察できることを示唆する。
論文 参考訳(メタデータ) (2023-04-09T20:36:13Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
我々は,知識外挿の新たな視点から,対実合成を研究する。
本稿では, 知識外挿問題に対処するために, クローズド形式判別器を用いた対角ゲームが利用可能であることを示す。
提案手法は,多くのシナリオにおいて,エレガントな理論的保証と優れた性能の両方を享受する。
論文 参考訳(メタデータ) (2022-05-21T08:39:42Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
AIと因果関係の中心的な目標は、抽象表現と因果構造を共同で発見することである。
因果誘導を研究するための既存の環境は、複雑なタスク固有の因果グラフを持つため、この目的には適していない。
本研究の目的は,高次変数の学習表現と因果構造の研究を促進することである。
論文 参考訳(メタデータ) (2021-07-02T05:44:56Z) - Causal Discovery in Knowledge Graphs by Exploiting Asymmetric Properties
of Non-Gaussian Distributions [3.1981440103815717]
我々は、知識グラフで原因と影響の関係を発見できるハイブリッドアプローチを定義します。
提案手法は, 非ガウスモデルを用いて, 非実験行列の瞬時因果構造を求めることに基づく。
因果発見には2つのアルゴリズム、知識グラフの分解には1つのアルゴリズムを用いる。
論文 参考訳(メタデータ) (2021-06-02T09:33:05Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
我々は、軽度の仮定の下で、識別性と学習可能性に関する保証を提供する。
我々は,線形制約付き結合テンソル分解に基づく効率的なアルゴリズムを開発し,スケーラブルで保証可能な解を得る。
論文 参考訳(メタデータ) (2021-01-17T07:48:45Z) - Understanding Double Descent Requires a Fine-Grained Bias-Variance
Decomposition [34.235007566913396]
ラベルに関連付けられた用語への分散の解釈可能で対称的な分解について述べる。
バイアスはネットワーク幅とともに単調に減少するが、分散項は非単調な振る舞いを示す。
我々はまた、著しく豊かな現象論も分析する。
論文 参考訳(メタデータ) (2020-11-04T21:04:02Z) - A Critical View of the Structural Causal Model [89.43277111586258]
相互作用を全く考慮せずに原因と効果を識別できることが示される。
本稿では,因果モデルの絡み合った構造を模倣する新たな逆行訓練法を提案する。
我々の多次元手法は, 合成および実世界の両方のデータセットにおいて, 文献的手法よりも優れている。
論文 参考訳(メタデータ) (2020-02-23T22:52:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。