Optimization strategies in WAHTOR algorithm for quantum computing
empirical ansatz: a comparative study
- URL: http://arxiv.org/abs/2306.11002v1
- Date: Mon, 19 Jun 2023 15:07:55 GMT
- Title: Optimization strategies in WAHTOR algorithm for quantum computing
empirical ansatz: a comparative study
- Authors: Leonardo Ratini, Chiara Capecci, Leonardo Guidoni
- Abstract summary: This work introduces a non-adiabatic version of the WAHTOR algorithm and compares its efficiency with three implementations.
Calculating first and second-order derivatives of the Hamiltonian at fixed VQE parameters does not introduce a prototypical QPU overload.
We find out that in the case of Hubbard model systems the trust region non-adiabatic optimization is more efficient.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By exploiting the invariance of the molecular Hamiltonian by a unitary
transformation of the orbitals it is possible to significantly shorter the
depth of the variational circuit in the Variational Quantum Eigensolver (VQE)
algorithm by using the Wavefunction Adapted Hamiltonian Through Orbital
Rotation (WAHTOR) algorithm. This work introduces a non-adiabatic version of
the WAHTOR algorithm and compares its efficiency with three implementations by
estimating Quantum Processing Unit (QPU) resources in prototypical benchmarking
systems. Calculating first and second-order derivatives of the Hamiltonian at
fixed VQE parameters does not introduce a significant QPU overload, leading to
results on small molecules that indicate the non-adiabatic Newton-Raphson
method as the more convenient choice. On the contrary, we find out that in the
case of Hubbard model systems the trust region non-adiabatic optimization is
more efficient. The preset work therefore clearly indicates the best
optimization strategies for empirical variational ansatzes, facilitating the
optimization of larger variational wavefunctions for quantum computing.
Related papers
- Optimizing Unitary Coupled Cluster Wave Functions on Quantum Hardware: Error Bound and Resource-Efficient Optimizer [0.0]
We study the projective quantum eigensolver (PQE) approach to optimizing unitary coupled cluster wave functions on quantum hardware.
The algorithm uses projections of the Schr"odinger equation to efficiently bring the trial state closer to an eigenstate of the Hamiltonian.
We present numerical evidence of superiority over both the optimization introduced in arXiv:2102.00345 and VQE optimized using the Broyden Fletcher Goldfarb Shanno (BFGS) method.
arXiv Detail & Related papers (2024-10-19T15:03:59Z) - Pulse-based variational quantum optimization and metalearning in superconducting circuits [3.770494165043573]
We introduce pulse-based variational quantum optimization (PBVQO) as a hardware-level framework.
We illustrate the framework by optimizing external superconducting on quantum interference devices.
The synergy between PBVQO and meta-learning provides an advantage over conventional gate-based variational algorithms.
arXiv Detail & Related papers (2024-07-17T15:05:36Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - A Comparative Study On Solving Optimization Problems With Exponentially
Fewer Qubits [0.0]
We evaluate and improve an algorithm based on Variational Quantum Eigensolver (VQE)
We highlight the numerical instabilities generated by encoding the problem into the variational ansatz.
We propose a classical optimization procedure to find the ground-state of the ansatz in less iterations with a better objective.
arXiv Detail & Related papers (2022-10-21T08:54:12Z) - Noisy Bayesian optimization for variational quantum eigensolvers [0.0]
The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm used to find the ground state of a Hamiltonian.
This work proposes an implementation of GPR and BO specifically tailored to perform VQE on quantum computers already available today.
arXiv Detail & Related papers (2021-12-01T11:28:55Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Improved accuracy on noisy devices by non-unitary Variational Quantum
Eigensolver for chemistry applications [0.0]
We propose a modification of the Variational Quantum Eigensolver algorithm for electronic structure optimization using quantum computers.
A non-unitary operator is combined with the original system Hamiltonian leading to a new variational problem with a simplified wavefunction Ansatz.
arXiv Detail & Related papers (2021-01-22T20:17:37Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.