PyRCA: A Library for Metric-based Root Cause Analysis
- URL: http://arxiv.org/abs/2306.11417v1
- Date: Tue, 20 Jun 2023 09:55:10 GMT
- Title: PyRCA: A Library for Metric-based Root Cause Analysis
- Authors: Chenghao Liu, Wenzhuo Yang, Himanshu Mittal, Manpreet Singh, Doyen
Sahoo, Steven C. H. Hoi
- Abstract summary: PyRCA is an open-source machine learning library of Root Cause Analysis (RCA) for Artificial Intelligence for IT Operations (AIOps)
It provides a holistic framework to uncover the complicated metric causal dependencies and automatically locate root causes of incidents.
- Score: 66.72542200701807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce PyRCA, an open-source Python machine learning library of Root
Cause Analysis (RCA) for Artificial Intelligence for IT Operations (AIOps). It
provides a holistic framework to uncover the complicated metric causal
dependencies and automatically locate root causes of incidents. It offers a
unified interface for multiple commonly used RCA models, encompassing both
graph construction and scoring tasks. This library aims to provide IT
operations staff, data scientists, and researchers a one-step solution to rapid
model development, model evaluation and deployment to online applications. In
particular, our library includes various causal discovery methods to support
causal graph construction, and multiple types of root cause scoring methods
inspired by Bayesian analysis, graph analysis and causal analysis, etc. Our GUI
dashboard offers practitioners an intuitive point-and-click interface,
empowering them to easily inject expert knowledge through human interaction.
With the ability to visualize causal graphs and the root cause of incidents,
practitioners can quickly gain insights and improve their workflow efficiency.
This technical report introduces PyRCA's architecture and major
functionalities, while also presenting benchmark performance numbers in
comparison to various baseline models. Additionally, we demonstrate PyRCA's
capabilities through several example use cases.
Related papers
- CAnDOIT: Causal Discovery with Observational and Interventional Data from Time-Series [4.008958683836471]
CAnDOIT is a causal discovery method to reconstruct causal models using both observational and interventional data.
The use of interventional data in the causal analysis is crucial for real-world applications, such as robotics.
A Python implementation of CAnDOIT has also been developed and is publicly available on GitHub.
arXiv Detail & Related papers (2024-10-03T13:57:08Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Generic Multi-modal Representation Learning for Network Traffic Analysis [6.372999570085887]
Network traffic analysis is fundamental for network management, troubleshooting, and security.
We propose a flexible Multi-modal Autoencoder (MAE) pipeline that can solve different use cases.
We argue that the MAE architecture is generic and can be used to learn representations useful in multiple scenarios.
arXiv Detail & Related papers (2024-05-04T12:24:29Z) - Exploring LLM-based Agents for Root Cause Analysis [17.053079105858497]
Root cause analysis (RCA) is a critical part of the incident management process.
Large Language Models (LLMs) have been used to perform RCA, but are not able to collect additional diagnostic information.
We present an evaluation of a ReAct agent equipped with retrieval tools, on an out-of-distribution dataset of production incidents collected at Microsoft.
arXiv Detail & Related papers (2024-03-07T00:44:01Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - Leveraging Log Instructions in Log-based Anomaly Detection [0.5949779668853554]
We propose a method for reliable and practical anomaly detection from system logs.
It overcomes the common disadvantage of related works by building an anomaly detection model with log instructions from the source code of 1000+ GitHub projects.
The proposed method, named ADLILog, combines the log instructions and the data from the system of interest (target system) to learn a deep neural network model.
arXiv Detail & Related papers (2022-07-07T10:22:10Z) - Mining Root Cause Knowledge from Cloud Service Incident Investigations
for AIOps [71.12026848664753]
Root Cause Analysis (RCA) of any service-disrupting incident is one of the most critical as well as complex tasks in IT processes.
In this work, we present ICA and the downstream Incident Search and Retrieval based RCA pipeline, built at Salesforce.
arXiv Detail & Related papers (2022-04-21T02:33:34Z) - KILT: a Benchmark for Knowledge Intensive Language Tasks [102.33046195554886]
We present a benchmark for knowledge-intensive language tasks (KILT)
All tasks in KILT are grounded in the same snapshot of Wikipedia.
We find that a shared dense vector index coupled with a seq2seq model is a strong baseline.
arXiv Detail & Related papers (2020-09-04T15:32:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.