Nonperturbative Waveguide Quantum Electrodynamics
- URL: http://arxiv.org/abs/2105.08833v5
- Date: Wed, 25 May 2022 00:32:08 GMT
- Title: Nonperturbative Waveguide Quantum Electrodynamics
- Authors: Yuto Ashida, Takeru Yokota, Atac Imamoglu, Eugene Demler
- Abstract summary: We study in and out of equilibrium properties of waveguide quantum electrodynamics.
We uncover several surprising features ranging from symmetry-protected many-body bound states in the continuum to strong renormalization of the effective mass.
Results are relevant to experiments in superconducting qubits interacting with microwave resonators or coupled atoms to photonic crystals.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding physical properties of quantum emitters strongly interacting
with quantized electromagnetic modes is one of the primary goals in the
emergent field of waveguide quantum electrodynamics (QED). When the
light-matter coupling strength is comparable to or even exceeds energies of
elementary excitations, conventional approaches based on perturbative treatment
of light-matter interactions, two-level description of matter excitations, and
photon-number truncation are no longer sufficient. Here we study in and out of
equilibrium properties of waveguide QED in such nonperturbative regimes on the
basis of a comprehensive and rigorous theoretical approach using an asymptotic
decoupling unitary transformation. We uncover several surprising features
ranging from symmetry-protected many-body bound states in the continuum to
strong renormalization of the effective mass and potential; the latter may
explain recent experiments demonstrating cavity-induced changes in chemical
reactivity as well as enhancements of ferromagnetism or superconductivity. To
illustrate our general results with concrete examples, we use our formalism to
study a model of coupled cavity arrays, which is relevant to experiments in
superconducting qubits interacting with microwave resonators or atoms coupled
to photonic crystals. We examine the relation between our results and
delocalization-localization transition in the spin-boson model; notably, we
point out that a reentrant transition can occur in the regimes where the
coupling strength becomes the dominant energy scale. We also discuss
applications of our results to other problems in different fields, including
quantum optics, condensed matter physics, and quantum chemistry.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Quantum Floquet engineering with an exactly solvable tight-binding chain
in a cavity [0.0]
We provide an exactly solvable model given by a tight-binding chain coupled to a single cavity mode.
We show that perturbative expansions in the light-matter coupling have to be taken with care and can easily lead to a false superradiant phase.
In addition, we derive analytical expressions for the electronic single-particle spectral function and optical conductivity.
arXiv Detail & Related papers (2021-07-26T14:33:20Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Cavity Quantum Electrodynamics at Arbitrary Light-Matter Coupling
Strengths [0.0]
Quantum light-matter systems at strong coupling are notoriously challenging to analyze.
We propose a nonperturbative approach to analyze light-matter correlations at all interaction strengths.
arXiv Detail & Related papers (2020-10-07T18:00:10Z) - Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric
Phase Transition [0.0]
We study a dipolar quantum many-body system embedded in a cavity composed of metal mirrors.
We analyze hybridization of different types of the fundamental excitations, including dipolar phonons, cavity photons, and plasmons in metal mirrors.
Our findings suggest an intriguing possibility of inducing a superradiant-type transition via the light-matter coupling without external pumping.
arXiv Detail & Related papers (2020-03-30T18:00:01Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.