論文の概要: Understanding Contrastive Learning Through the Lens of Margins
- arxiv url: http://arxiv.org/abs/2306.11526v1
- Date: Tue, 20 Jun 2023 13:28:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 14:13:58.291365
- Title: Understanding Contrastive Learning Through the Lens of Margins
- Title(参考訳): マージンレンズによるコントラスト学習の理解
- Authors: Daniel Rho, TaeSoo Kim, Sooill Park, Jaehyun Park, JaeHan Park
- Abstract要約: 自己教師型学習(SSL)は、現実世界のタスクにおける機械学習の利用を拡大する鍵を握る。
比較学習がより深いレベルでどのように機能するかを理解するために、マージンをステップストーンとして使用しています。
- 参考スコア(独自算出の注目度): 9.443122526245562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised learning, or SSL, holds the key to expanding the usage of
machine learning in real-world tasks by alleviating heavy human supervision.
Contrastive learning and its varieties have been SSL strategies in various
fields. We use margins as a stepping stone for understanding how contrastive
learning works at a deeper level and providing potential directions to improve
representation learning. Through gradient analysis, we found that margins scale
gradients in three different ways: emphasizing positive samples, de-emphasizing
positive samples when angles of positive samples are wide, and attenuating the
diminishing gradients as the estimated probability approaches the target
probability. We separately analyze each and provide possible directions for
improving SSL frameworks. Our experimental results demonstrate that these
properties can contribute to acquiring better representations, which can
enhance performance in both seen and unseen datasets.
- Abstract(参考訳): 自己教師付き学習(SSL)は、人間の監督を緩和することで、現実世界のタスクにおける機械学習の利用を拡大する鍵を握る。
対照的な学習とその種類は様々な分野におけるssl戦略である。
我々は、比較学習がより深いレベルでどのように機能するかを理解し、表現学習を改善する潜在的な方向性を提供するための足掛かりとしてマージンを使用します。
勾配解析により, 正試料の強調, 正試料の角度が広い場合の正試料の非強調, 推定確率が目標確率に近づいた場合の減少勾配の減衰, の3つの異なる方法が得られた。
それぞれを別々に分析し、SSLフレームワークを改善するための可能な方向性を提供します。
実験結果から,これらの特性がより良い表現の獲得に寄与できることが確認できた。
関連論文リスト
- Using Self-supervised Learning Can Improve Model Fairness [10.028637666224093]
自己教師型学習(SSL)は,大規模モデルのデファクトトレーニングパラダイムとなっている。
本研究では,事前学習と微調整が公正性に及ぼす影響について検討する。
SSLの公平性評価フレームワークを導入し、データセット要件の定義、事前トレーニング、段階的凍結による微調整、人口統計学的に条件付けられた表現類似性の評価、ドメイン固有の評価プロセスの確立の5段階を含む。
論文 参考訳(メタデータ) (2024-06-04T14:38:30Z) - The Common Stability Mechanism behind most Self-Supervised Learning
Approaches [64.40701218561921]
自己指導型学習手法の安定性のメカニズムを説明するための枠組みを提供する。
我々は,BYOL,SWAV,SimSiam,Barlow Twins,DINOなどの非コントラスト技術であるSimCLRの動作メカニズムについて議論する。
私たちは異なる仮説を定式化し、Imagenet100データセットを使ってそれらをテストします。
論文 参考訳(メタデータ) (2024-02-22T20:36:24Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Semantic Positive Pairs for Enhancing Visual Representation Learning of Instance Discrimination methods [4.680881326162484]
インスタンス識別に基づく自己教師付き学習アルゴリズム(SSL)は有望な結果を示している。
類似したセマンティックコンテンツを用いてそれらの画像を識別し、肯定的な例として扱うアプローチを提案する。
我々は、ImageNet、STL-10、CIFAR-10の3つのベンチマークデータセットで、異なるインスタンス識別SSLアプローチで実験を行った。
論文 参考訳(メタデータ) (2023-06-28T11:47:08Z) - Learning Common Rationale to Improve Self-Supervised Representation for
Fine-Grained Visual Recognition Problems [61.11799513362704]
我々は、インスタンスやクラスでよく見られる差別的手がかりを識別するための、追加のスクリーニングメカニズムの学習を提案する。
SSL目標から誘導されるGradCAMを単純に利用することで、共通な有理性検出器が学習可能であることを示す。
論文 参考訳(メタデータ) (2023-03-03T02:07:40Z) - ArCL: Enhancing Contrastive Learning with Augmentation-Robust
Representations [30.745749133759304]
我々は,自己教師付きコントラスト学習の伝達可能性を分析する理論的枠組みを開発する。
対照的な学習は、その伝達可能性を制限するような、ドメイン不変の機能を学ぶのに失敗することを示す。
これらの理論的知見に基づき、Augmentation-robust Contrastive Learning (ArCL) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-02T09:26:20Z) - On Higher Adversarial Susceptibility of Contrastive Self-Supervised
Learning [104.00264962878956]
コントラスト型自己教師学習(CSL)は,画像と映像の分類において,教師あり学習のパフォーマンスに適合するか上回っている。
2つの学習パラダイムによって誘導される表現の性質が似ているかどうかは、いまだに不明である。
我々は,CSL表現空間における単位超球面上のデータ表現の均一分布を,この現象の鍵となる要因として同定する。
CSLトレーニングでモデルロバスト性を改善するのにシンプルだが有効である戦略を考案する。
論文 参考訳(メタデータ) (2022-07-22T03:49:50Z) - Learning Where to Learn in Cross-View Self-Supervised Learning [54.14989750044489]
自己教師付き学習(SSL)は大きな進歩を遂げ、教師付き学習との大きなギャップを狭めた。
現在の方法では、埋め込みにピクセルの統一的なアグリゲーションを採用する。
本稿では,特徴の空間情報を適応的に集約する学習方法であるLearning Where to Learn(LEWEL)を提案する。
論文 参考訳(メタデータ) (2022-03-28T17:02:42Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
オープンセット半教師付き学習(Open-set SSL)では、ラベルなしデータにOOD(Out-of-distribution)サンプルを含む、難しいが実用的なシナリオを調査する。
我々は、OODデータの存在を効果的に活用し、特徴学習を増強する新しいトレーニングメカニズムを提案する。
我々のアプローチは、オープンセットSSLのパフォーマンスを大幅に向上させ、最先端技術よりも大きなマージンで性能を向上します。
論文 参考訳(メタデータ) (2021-08-12T09:14:44Z) - Semi-Discriminative Representation Loss for Online Continual Learning [16.414031859647874]
勾配に基づくアプローチは、コンパクトなエピソードメモリをより効率的に活用するために開発されている。
本稿では,SDRL(Semi-Discriminative Representation Loss)という,連続学習のための簡易な手法を提案する。
論文 参考訳(メタデータ) (2020-06-19T17:13:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。