論文の概要: Deep Double Self-Expressive Subspace Clustering
- arxiv url: http://arxiv.org/abs/2306.11592v1
- Date: Tue, 20 Jun 2023 15:10:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 13:56:27.307596
- Title: Deep Double Self-Expressive Subspace Clustering
- Title(参考訳): ディープダブル自己表現型部分空間クラスタリング
- Authors: Ling Zhao, Yunpeng Ma, Shanxiong Chen, Jun Zhou
- Abstract要約: 二重自己表現型サブスペースクラスタリングアルゴリズムを提案する。
提案アルゴリズムは最先端手法よりも優れたクラスタリングを実現することができる。
- 参考スコア(独自算出の注目度): 7.875193047472789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep subspace clustering based on auto-encoder has received wide attention.
However, most subspace clustering based on auto-encoder does not utilize the
structural information in the self-expressive coefficient matrix, which limits
the clustering performance. In this paper, we propose a double self-expressive
subspace clustering algorithm. The key idea of our solution is to view the
self-expressive coefficient as a feature representation of the example to get
another coefficient matrix. Then, we use the two coefficient matrices to
construct the affinity matrix for spectral clustering. We find that it can
reduce the subspace-preserving representation error and improve connectivity.
To further enhance the clustering performance, we proposed a self-supervised
module based on contrastive learning, which can further improve the performance
of the trained network. Experiments on several benchmark datasets demonstrate
that the proposed algorithm can achieve better clustering than state-of-the-art
methods.
- Abstract(参考訳): オートエンコーダに基づく深部サブスペースクラスタリングが注目されている。
しかし、オートエンコーダに基づくほとんどのサブスペースクラスタリングは、クラスタリング性能を制限する自己表現係数行列の構造情報を利用しない。
本稿では,二重自己表現型サブスペースクラスタリングアルゴリズムを提案する。
我々の解の鍵となる考え方は、自己表現係数を例の特徴表現として、別の係数行列を得ることである。
次に,2つの係数行列を用いてスペクトルクラスタリングのための親和性行列を構築する。
サブスペース保存表現エラーを低減し、接続性を向上させることができる。
クラスタ化性能をさらに高めるために,コントラスト学習に基づく自己教師付きモジュールを提案し,ネットワークの性能をさらに向上させた。
いくつかのベンチマークデータセットの実験により、提案アルゴリズムは最先端の手法よりも優れたクラスタリングを実現することができることが示された。
関連論文リスト
- Scalable Co-Clustering for Large-Scale Data through Dynamic Partitioning and Hierarchical Merging [7.106620444966807]
クラスタの行と列を同時にクラスタリングすることで、よりきめ細かいグループを明らかにします。
既存のクラスタリング手法はスケーラビリティが悪く、大規模なデータを扱うことができない。
本稿では,高次元大規模データセットにおける複雑なパターンを明らかにするために,新しい,スケーラブルなコクラスタリング手法を提案する。
論文 参考訳(メタデータ) (2024-10-09T04:47:22Z) - Adaptive Graph Convolutional Subspace Clustering [10.766537212211217]
スペクトル型サブスペースクラスタリングアルゴリズムは多くのサブスペースクラスタリングアプリケーションにおいて優れた性能を示している。
本稿では,グラフ畳み込みネットワークにヒントを得たグラフ畳み込み手法を用いて特徴抽出法と係数行列制約を同時に開発する。
AGCSCを用いることで、元のデータサンプルの集合的特徴表現がサブスペースクラスタリングに適していると主張する。
論文 参考訳(メタデータ) (2023-05-05T10:27:23Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
本稿では,初期監視情報を同時に拡張し,識別親和性行列を構築することのできる,新しい半教師付きサブスペースクラスタリング手法を提案する。
6つの一般的なベンチマークデータセットの総合的な実験結果から,本手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-21T01:47:17Z) - Ensemble Clustering via Co-association Matrix Self-enhancement [16.928049559092454]
アンサンブルクラスタリングは、一連のベースクラスタリング結果を統合して、より強力なクラスタを生成する。
既存の手法は通常、同一のクラスタに2つのサンプルがグループ化された回数を測定する共連想行列(CA)に依存している。
本稿では, クラスタリング性能を向上させるために, CA行列を改善するための, 単純かつ効果的なCA行列自己拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-12T07:54:32Z) - Deep Embedded K-Means Clustering [1.5697094704362897]
主な考え方は、表現学習とクラスタリングが相互に強化できることだ。
本稿では,この2つの疑問に答えるために,DeKM(Deep Embedded K-Means)を提案する。
実世界のデータセットに関する実験結果は、DECMが最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2021-09-30T14:12:59Z) - Adaptive Attribute and Structure Subspace Clustering Network [49.040136530379094]
自己表現型サブスペースクラスタリングネットワークを提案する。
まず、入力データサンプルを表現する自動エンコーダについて検討する。
そこで我々は, 局所的な幾何学的構造を捉えるために, 混合符号と対称構造行列を構築した。
構築された属性構造と行列に対して自己表現を行い、親和性グラフを学習する。
論文 参考訳(メタデータ) (2021-09-28T14:00:57Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
本稿では,複数のクラスタリングを組み合わせ,個々のクラスタリングよりも優れたパフォーマンスを実現するクラスタリングアンサンブルの問題について検討する。
本稿では,この問題をグローバルな視点から解くために,新しい低ランクテンソル近似法を提案する。
7つのベンチマークデータセットを用いた実験の結果,提案手法は12の最先端手法と比較して,クラスタリング性能のブレークスルーを達成した。
論文 参考訳(メタデータ) (2020-12-16T13:01:37Z) - Overcomplete Deep Subspace Clustering Networks [80.16644725886968]
4つのベンチマークデータセットの実験結果から,クラスタリング誤差の観点から,DSCや他のクラスタリング手法に対する提案手法の有効性が示された。
また,本手法は,最高の性能を得るために事前学習を中止する点にDSCほど依存せず,騒音にも頑健である。
論文 参考訳(メタデータ) (2020-11-16T22:07:18Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
マルチビュースペクトルクラスタリングは、データ間の固有のクラスタ構造を効果的に明らかにすることができる。
本稿では,高次最適近傍ラプラシア行列を学習するマルチビュースペクトルクラスタリングアルゴリズムを提案する。
提案アルゴリズムは, 1次ベースと高次ベースの両方の線形結合の近傍を探索し, 最適ラプラシア行列を生成する。
論文 参考訳(メタデータ) (2020-08-31T12:28:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。