論文の概要: Ensemble Clustering via Co-association Matrix Self-enhancement
- arxiv url: http://arxiv.org/abs/2205.05937v1
- Date: Thu, 12 May 2022 07:54:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-13 14:28:56.801840
- Title: Ensemble Clustering via Co-association Matrix Self-enhancement
- Title(参考訳): Co-Association Matrix Self-Enhancementによるアンサンブルクラスタリング
- Authors: Yuheng Jia, Sirui Tao, Ran Wang, Yongheng Wang
- Abstract要約: アンサンブルクラスタリングは、一連のベースクラスタリング結果を統合して、より強力なクラスタを生成する。
既存の手法は通常、同一のクラスタに2つのサンプルがグループ化された回数を測定する共連想行列(CA)に依存している。
本稿では, クラスタリング性能を向上させるために, CA行列を改善するための, 単純かつ効果的なCA行列自己拡張フレームワークを提案する。
- 参考スコア(独自算出の注目度): 16.928049559092454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensemble clustering integrates a set of base clustering results to generate a
stronger one. Existing methods usually rely on a co-association (CA) matrix
that measures how many times two samples are grouped into the same cluster
according to the base clusterings to achieve ensemble clustering. However, when
the constructed CA matrix is of low quality, the performance will degrade. In
this paper, we propose a simple yet effective CA matrix self-enhancement
framework that can improve the CA matrix to achieve better clustering
performance. Specifically, we first extract the high-confidence (HC)
information from the base clusterings to form a sparse HC matrix. By
propagating the highly-reliable information of the HC matrix to the CA matrix
and complementing the HC matrix according to the CA matrix simultaneously, the
proposed method generates an enhanced CA matrix for better clustering.
Technically, the proposed model is formulated as a symmetric constrained convex
optimization problem, which is efficiently solved by an alternating iterative
algorithm with convergence and global optimum theoretically guaranteed.
Extensive experimental comparisons with twelve state-of-the-art methods on
eight benchmark datasets substantiate the effectiveness, flexibility and
efficiency of the proposed model in ensemble clustering. The codes and datasets
can be downloaded at https://github.com/Siritao/EC- CMS.
- Abstract(参考訳): Ensembleクラスタリングは、一連のベースクラスタリング結果を統合して、より強力なクラスタを生成する。
既存の手法は通常、アンサンブルクラスタリングを達成するために、2つのサンプルが同じクラスタに何回グループ化されるかを測定するコアソシエーション(CA)マトリックスに依存している。
しかし、構築されたCA行列が低品質である場合、性能は低下する。
本稿では,CA行列を改良し,クラスタリング性能を向上する,シンプルで効果的なCA行列自己拡張フレームワークを提案する。
具体的には、まずベースクラスタリングから高信頼(HC)情報を抽出し、スパースHC行列を形成する。
HCマトリクスの信頼性の高い情報をCAマトリクスに伝播し、同時にCAマトリクスに従ってHCマトリクスを補完することにより、より優れたクラスタリングのための強化CAマトリクスを生成する。
技術的には、提案モデルは対称的制約付き凸最適化問題として定式化され、収束と大域的最適条件の交互反復アルゴリズムにより効率よく解かれる。
アンサンブルクラスタリングにおけるモデルの有効性,柔軟性,効率性を検証した8つのベンチマークデータセットに対する12の最先端手法との比較実験を行った。
コードとデータセットはhttps://github.com/Siritao/EC- CMSでダウンロードできる。
関連論文リスト
- High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
共分散行列の明示的な構成を避ける新しい推論手法を提案する。
本手法では, 数値線形代数と共役勾配アルゴリズムの対角線推定結果とを結合する。
いくつかのシミュレーションにおいて,本手法は計算時間とメモリにおける既存手法よりも拡張性が高い。
論文 参考訳(メタデータ) (2022-02-25T16:35:26Z) - Optimal Variable Clustering for High-Dimensional Matrix Valued Data [5.210197476419622]
本稿では,行列形式で配置された特徴に対して,新しい潜在変数モデルを提案する。
軽度条件下では,高次元設定でクラスタリングの整合性が得られる。
この重みを使用すれば、アルゴリズムが最小値の速度最適化であることが保証されるという意味で、最適な重みを識別する。
論文 参考訳(メタデータ) (2021-12-24T02:13:04Z) - Deep Attention-guided Graph Clustering with Dual Self-supervision [49.040136530379094]
デュアル・セルフ・スーパービジョン(DAGC)を用いたディープアテンション誘導グラフクラスタリング法を提案する。
我々は,三重項Kulback-Leibler分散損失を持つソフトな自己スーパービジョン戦略と,擬似的な監督損失を持つハードな自己スーパービジョン戦略からなる二重自己スーパービジョンソリューションを開発する。
提案手法は6つのベンチマークデータセットにおける最先端の手法より一貫して優れている。
論文 参考訳(メタデータ) (2021-11-10T06:53:03Z) - Adaptive Attribute and Structure Subspace Clustering Network [49.040136530379094]
自己表現型サブスペースクラスタリングネットワークを提案する。
まず、入力データサンプルを表現する自動エンコーダについて検討する。
そこで我々は, 局所的な幾何学的構造を捉えるために, 混合符号と対称構造行列を構築した。
構築された属性構造と行列に対して自己表現を行い、親和性グラフを学習する。
論文 参考訳(メタデータ) (2021-09-28T14:00:57Z) - LSEC: Large-scale spectral ensemble clustering [8.545202841051582]
本稿では,効率と効率のバランスを良くするために,大規模スペクトルアンサンブルクラスタリング(LSEC)手法を提案する。
LSEC法は既存のアンサンブルクラスタリング法よりも計算複雑性が低い。
論文 参考訳(メタデータ) (2021-06-18T00:42:03Z) - Spatially Coherent Clustering Based on Orthogonal Nonnegative Matrix
Factorization [0.0]
本稿では,クラスタメンバシップ行列の総変動(TV)正規化手順に基づく作業クラスタリングモデルを紹介する。
マトリックス支援レーザー脱離イオン化イメージング測定から得られた超スペクトルデータセット上の提案手法をすべて数値的に評価する。
論文 参考訳(メタデータ) (2021-04-25T23:40:41Z) - Self-supervised Symmetric Nonnegative Matrix Factorization [82.59905231819685]
シンメトリー非負係数行列(SNMF)は、データクラスタリングの強力な方法であることを示した。
より良いクラスタリング結果を求めるアンサンブルクラスタリングにインスパイアされた,自己監視型SNMF(S$3$NMF)を提案する。
SNMFのコード特性に対する感度を、追加情報に頼らずに活用しています。
論文 参考訳(メタデータ) (2021-03-02T12:47:40Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
本稿では,複数のクラスタリングを組み合わせ,個々のクラスタリングよりも優れたパフォーマンスを実現するクラスタリングアンサンブルの問題について検討する。
本稿では,この問題をグローバルな視点から解くために,新しい低ランクテンソル近似法を提案する。
7つのベンチマークデータセットを用いた実験の結果,提案手法は12の最先端手法と比較して,クラスタリング性能のブレークスルーを達成した。
論文 参考訳(メタデータ) (2020-12-16T13:01:37Z) - Doubly Stochastic Subspace Clustering [9.815735805354905]
多くの最先端サブスペースクラスタリング法は、まずデータポイント間の親和性行列を構築し、その親和性にスペクトルクラスタリングを適用することによって、2段階のプロセスに従う。
本研究では、データの自己表現表現と、スペクトルクラスタリングによく正規化された親和性行列の両方を学習する。
実験により,コンピュータビジョンにおける多くの共通データセットに対して,最先端のサブスペースクラスタリング性能が得られた。
論文 参考訳(メタデータ) (2020-11-30T14:56:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。