Topological insulator and quantum memory
- URL: http://arxiv.org/abs/2306.11691v1
- Date: Tue, 20 Jun 2023 17:10:44 GMT
- Title: Topological insulator and quantum memory
- Authors: M. Kulig, P. Kurashvili, C. Jasiukiewicz, M. Inglot, S. Wolski, S.
Stagraczy\'nski, T. Mas{\l}owski, T. Szczepa\'nski, R. Stagraczy\'nski, V. K.
Dugaev, and L. Chotorlishvili
- Abstract summary: Uncertainty relations define the universal accuracy limit of quantum measurements.
Relatively recently, it was discovered that quantum correlations and quantum memory might reduce the uncertainty of quantum measurements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Measurements done on the quantum systems are too specific. Contrary to their
classical counterparts, quantum measurements can be invasive and destroy the
state of interest. Besides, quantumness limits the accuracy of measurements
done on quantum systems. Uncertainty relations define the universal accuracy
limit of the quantum measurements. Relatively recently, it was discovered that
quantum correlations and quantum memory might reduce the uncertainty of quantum
measurements. In the present work, we study two different types of measurements
done on the topological system. Namely, we discuss measurements done on the
spin operators and the canonical pair of operators: momentum and coordinate. We
quantify the spin operator's measurements through the entropic measures of
uncertainty and exploit the concept of quantum memory. While for the momentum
and coordinate operators, we exploit the improved uncertainty relations. We
discovered that quantum memory reduces the uncertainties of spin measurements.
On the hand, we proved that the uncertainties in the measurements of the
coordinate and momentum operators depend on the value of the momentum and are
substantially enhanced at small distances between itinerant and localized
electrons (the large momentum limit). We note that the topological nature of
the system leads to the spin-momentum locking. The momentum of the electron
depends on the spin and vice versa. Therefore, we suggest the indirect
measurement scheme for the momentum and coordinate operators through the spin
operator. Due to the factor of quantum memory, such indirect measurements in
topological insulators have smaller uncertainties rather than direct
measurements.
Related papers
- Effect of measurements on quantum speed limit [0.0]
We show that under continuous measurement, the speed of transportation of a quantum system tends to zero.
For small time scale, there is an enhancement of quantum speed even if the measurement strength is finite.
Our findings can have applications in quantum computing and quantum control where dynamics is governed by both unitary and measurement processes.
arXiv Detail & Related papers (2024-06-13T11:14:22Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Quantum Back-action Limits in Dispersively Measured Bose-Einstein
Condensates [0.0]
We theoretically and experimentally characterize quantum back-action in atomic Bose-Einstein condensates interacting with a far-from resonant laser beam.
We experimentally quantify the resulting wavefunction change in terms of the contrast of a Ramsey interferometer.
This result is a necessary precursor for achieving true quantum back-action limited measurements of quantum gases.
arXiv Detail & Related papers (2022-09-09T17:04:36Z) - Spin operator, Bell nonlocality and Tsirelson bound in quantum-gravity
induced minimal-length quantum mechanics [0.0]
We show that the spin operator acquires a momentum-dependent contribution in quantum mechanics equipped with a minimal length.
Among other consequences, this modification induces a form of quantum nonlocality stronger than the one arising in ordinary quantum mechanics.
arXiv Detail & Related papers (2022-07-21T11:22:33Z) - Experimental limit on non-linear state-dependent terms in quantum theory [110.83289076967895]
We implement blinded measurement and data analysis with three control bit strings.
Control of systematic effects is realized by producing one of the control bit strings with a classical random-bit generator.
Our measurements find no evidence for electromagnetic quantum state-dependent non-linearity.
arXiv Detail & Related papers (2022-04-25T18:00:03Z) - Quantum spin-flavour memory of ultrahigh-energy neutrino [0.0]
We study uncertainties related to the interstellar ultrahigh-energy neutrino.
We introduce a novel concept: quantum spin-flavour memory.
We find that while most measures of quantum correlations show their irrelevance, the quantum spin-flavour is the quantifier of the quantum spin-flavour memory.
arXiv Detail & Related papers (2022-02-07T19:54:05Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Ancilla-assisted probing of temporal quantum correlations of large spins [0.0]
I propose a measurement protocol that mitigates the effect of measurement backaction by exploiting spin selection rules.
A potential application of such a protocol is the probing of an array of Bose-Einstein condensates by light.
arXiv Detail & Related papers (2020-06-12T09:27:24Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.