Quantum spin-flavour memory of ultrahigh-energy neutrino
- URL: http://arxiv.org/abs/2202.06735v1
- Date: Mon, 7 Feb 2022 19:54:05 GMT
- Title: Quantum spin-flavour memory of ultrahigh-energy neutrino
- Authors: P. Kurashvili, L. Chotorlishvili, K. A. Kouzakov, A. I. Studenikin
- Abstract summary: We study uncertainties related to the interstellar ultrahigh-energy neutrino.
We introduce a novel concept: quantum spin-flavour memory.
We find that while most measures of quantum correlations show their irrelevance, the quantum spin-flavour is the quantifier of the quantum spin-flavour memory.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There are two types of uncertainties related to the measurements done on a
quantum system: statistical and those related to non-commuting observables and
incompatible measurements. The latter indicates the quantum system's inherent
nature and is in the scope of the present study. We explore uncertainties
related to the interstellar ultrahigh-energy neutrino and introduce a novel
concept: quantum spin-flavour memory. Advanced uncertainty measures are
entropic measures, and the effect of the quantum memory reduces the
uncertainty. The problem in question corresponds to a real physical event:
high-energy Dirac neutrinos emitted by some distant source and propagating
towards the earth. The neutrino has a finite magnetic moment and interacts with
both deterministic and stochastic interstellar magnetic fields. To describe the
effect of a noisy environment, we exploit the Lindblad master equation for the
neutrino density matrix. Quantum spin-flavour memory we quantify in terms of
the generalized Kraus's trade-off relation. This trade-off relation converts to
the equality when quantum memory is absent. We discovered that while most
measures of quantum correlations show their irrelevance, the quantum
spin-flavour discord is the quantifier of the quantum spin-flavour memory.
Related papers
- Expressibility, entangling power and quantum average causal effect for causally indefinite circuits [37.69303106863453]
We implement parameterized quantum circuits with definite and indefinite causal order.
One of these is the expressibility, which measures how uniformly a given quantum circuit can reach the whole Hilbert space.
We find a correlation between the quantum average causal effect and the entangling power.
arXiv Detail & Related papers (2024-11-13T13:53:02Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Causality and a possible interpretation of quantum mechanics [2.7398542529968477]
Based on quantum field theory, our work provides a framework that harmoniously integrates relativistic causality, quantum non-locality, and quantum measurement.
We use reduced density matrices to represent the local information of the quantum state and show that the reduced density matrices cannot evolve superluminally.
Unlike recent approaches that focus on causality by introducing new operators to describe detectors, we consider that everything--including detectors, environments, and humans--is composed of the same fundamental fields.
arXiv Detail & Related papers (2024-02-08T07:07:22Z) - Topological insulator and quantum memory [0.0]
Uncertainty relations define the universal accuracy limit of quantum measurements.
Relatively recently, it was discovered that quantum correlations and quantum memory might reduce the uncertainty of quantum measurements.
arXiv Detail & Related papers (2023-06-20T17:10:44Z) - Quantum nonreciprocal interactions via dissipative gauge symmetry [18.218574433422535]
One-way nonreciprocal interactions between two quantum systems are typically described by a cascaded quantum master equation.
We present a new approach for obtaining nonreciprocal quantum interactions that is completely distinct from cascaded quantum systems.
arXiv Detail & Related papers (2022-03-17T15:34:40Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum correlations and quantum-memory-assisted entropic uncertainty
relation in a quantum dot system [0.0]
Uncertainty principle is one of the comprehensive and fundamental concept in quantum theory.
We will study the quantum correlation and quantum memory assisted entropic uncertainty in a quantum dot system.
arXiv Detail & Related papers (2020-06-08T05:16:09Z) - Multiple uncertainty relation for accelerated quantum information [8.598192865991367]
We demonstrate a relativistic protocol of an uncertainty game in the presence of localized fermionic quantum fields inside cavities.
A novel lower bound for entropic uncertainty relations with multiple quantum memories is given in terms of the Holevo quantity.
arXiv Detail & Related papers (2020-04-21T03:29:39Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Reading a qubit quantum state with a quantum meter: time unfolding of
quantum Darwinism and quantum information flux [0.0]
Quantum non Markovianity and quantum Darwinism are two phenomena linked by a common theme: the flux of quantum information between a quantum system and the quantum environment it interacts with.
We will show how, in some regimes, such quantum information flux is inefficient, leading to the simultaneous emergence of non Markovian and non darwinistic behaviours.
arXiv Detail & Related papers (2020-01-30T20:37:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.