Neural ShDF: Reviving an Efficient and Consistent Mesh Segmentation
Method
- URL: http://arxiv.org/abs/2306.11737v2
- Date: Thu, 31 Aug 2023 15:57:37 GMT
- Title: Neural ShDF: Reviving an Efficient and Consistent Mesh Segmentation
Method
- Authors: Bruno Roy
- Abstract summary: We present a data-driven approach leveraging deep learning to encode a mapping function prior to mesh segmentation.
Our approach is resolution-agnostic as we downsample the input meshes and query the full-resolution structure.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Partitioning a polygonal mesh into meaningful parts can be challenging. Many
applications require decomposing such structures for further processing in
computer graphics. In the last decade, several methods were proposed to tackle
this problem, at the cost of intensive computational times. Recently, machine
learning has proven to be effective for the segmentation task on 3D structures.
Nevertheless, these state-of-the-art methods are often hardly generalizable and
require dividing the learned model into several specific classes of objects to
avoid overfitting. We present a data-driven approach leveraging deep learning
to encode a mapping function prior to mesh segmentation for multiple
applications. Our network reproduces a neighborhood map using our knowledge of
the \textsl{Shape Diameter Function} (SDF) method using similarities among
vertex neighborhoods. Our approach is resolution-agnostic as we downsample the
input meshes and query the full-resolution structure solely for neighborhood
contributions. Using our predicted SDF values, we can inject the resulting
structure into a graph-cut algorithm to generate an efficient and robust mesh
segmentation while considerably reducing the required computation times.
Related papers
- SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
We present a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network.
Our key innovation is to define a continuous latent connectivity space at each mesh, which implies the discrete mesh.
In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
arXiv Detail & Related papers (2024-09-30T17:59:03Z) - 3D Geometric Shape Assembly via Efficient Point Cloud Matching [59.241448711254485]
We introduce Proxy Match Transform (PMT), an approximate high-order feature transform layer that enables reliable matching between mating surfaces of parts.
Building upon PMT, we introduce a new framework, dubbed Proxy Match TransformeR (PMTR), for the geometric assembly task.
We evaluate the proposed PMTR on the large-scale 3D geometric shape assembly benchmark dataset of Breaking Bad.
arXiv Detail & Related papers (2024-07-15T08:50:02Z) - Neural Kernel Surface Reconstruction [80.51581494300423]
We present a novel method for reconstructing a 3D implicit surface from a large-scale, sparse, and noisy point cloud.
Our approach builds upon the recently introduced Neural Kernel Fields representation.
arXiv Detail & Related papers (2023-05-31T06:25:18Z) - Cut-and-Approximate: 3D Shape Reconstruction from Planar Cross-sections
with Deep Reinforcement Learning [0.0]
We present to the best of our knowledge the first 3D shape reconstruction network to solve this task.
Our method is based on applying a Reinforcement Learning algorithm to learn how to effectively parse the shape.
arXiv Detail & Related papers (2022-10-22T17:48:12Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
We propose a primal-dual framework drawn from the graph-neural-network literature to triangle meshes.
Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them.
We provide theoretical insights of our approach using tools from the mesh-simplification literature.
arXiv Detail & Related papers (2020-10-23T14:49:02Z) - SEG-MAT: 3D Shape Segmentation Using Medial Axis Transform [49.51977253452456]
We present an efficient method for 3D shape segmentation based on the medial axis transform (MAT) of the input shape.
Specifically, with the rich geometrical and structural information encoded in the MAT, we are able to identify the various types of junctions between different parts of a 3D shape.
Our method outperforms the state-of-the-art methods in terms of segmentation quality and is also one order of magnitude faster.
arXiv Detail & Related papers (2020-10-22T07:15:23Z) - Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with
Deep Metric Learning [5.699350798684963]
We propose a simple, yet efficient algorithm for 3D instance segmentation using deep metric learning.
For high-level intelligent tasks from a large scale scene, 3D instance segmentation recognizes individual instances of objects.
We demonstrate the state-of-the-art performance of our algorithm in the ScanNet 3D instance segmentation benchmark on AP score.
arXiv Detail & Related papers (2020-07-07T02:17:44Z) - Neural Subdivision [58.97214948753937]
This paper introduces Neural Subdivision, a novel framework for data-driven coarseto-fine geometry modeling.
We optimize for the same set of network weights across all local mesh patches, thus providing an architecture that is not constrained to a specific input mesh, fixed genus, or category.
We demonstrate that even when trained on a single high-resolution mesh our method generates reasonable subdivisions for novel shapes.
arXiv Detail & Related papers (2020-05-04T20:03:21Z) - FarSee-Net: Real-Time Semantic Segmentation by Efficient Multi-scale
Context Aggregation and Feature Space Super-resolution [14.226301825772174]
We introduce a novel and efficient module called Cascaded Factorized Atrous Spatial Pyramid Pooling (CF-ASPP)
It is a lightweight cascaded structure for Convolutional Neural Networks (CNNs) to efficiently leverage context information.
We achieve 68.4% mIoU at 84 fps on the Cityscapes test set with a single Nivida Titan X (Maxwell) GPU card.
arXiv Detail & Related papers (2020-03-09T03:53:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.