Multi-view 3D Object Reconstruction and Uncertainty Modelling with
Neural Shape Prior
- URL: http://arxiv.org/abs/2306.11739v2
- Date: Mon, 6 Nov 2023 06:59:25 GMT
- Title: Multi-view 3D Object Reconstruction and Uncertainty Modelling with
Neural Shape Prior
- Authors: Ziwei Liao, Steven L. Waslander
- Abstract summary: 3D object reconstruction is important for semantic scene understanding.
It is challenging to reconstruct detailed 3D shapes from monocular images directly due to a lack of depth information, occlusion and noise.
We tackle this problem by leveraging a neural object representation which learns an object shape distribution from large dataset of 3d object models and maps it into a latent space.
We propose a method to model uncertainty as part of the representation and define an uncertainty-aware encoder which generates latent codes with uncertainty directly from individual input images.
- Score: 9.716201630968433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D object reconstruction is important for semantic scene understanding. It is
challenging to reconstruct detailed 3D shapes from monocular images directly
due to a lack of depth information, occlusion and noise. Most current methods
generate deterministic object models without any awareness of the uncertainty
of the reconstruction. We tackle this problem by leveraging a neural object
representation which learns an object shape distribution from large dataset of
3d object models and maps it into a latent space. We propose a method to model
uncertainty as part of the representation and define an uncertainty-aware
encoder which generates latent codes with uncertainty directly from individual
input images. Further, we propose a method to propagate the uncertainty in the
latent code to SDF values and generate a 3d object mesh with local uncertainty
for each mesh component. Finally, we propose an incremental fusion method under
a Bayesian framework to fuse the latent codes from multi-view observations. We
evaluate the system in both synthetic and real datasets to demonstrate the
effectiveness of uncertainty-based fusion to improve 3D object reconstruction
accuracy.
Related papers
- Uncertainty-aware 3D Object-Level Mapping with Deep Shape Priors [15.34487368683311]
We propose a framework that can reconstruct high-quality object-level maps for unknown objects.
Our approach takes multiple RGB-D images as input and outputs dense 3D shapes and 9-DoF poses for detected objects.
We derive a probabilistic formulation that propagates shape and pose uncertainty through two novel loss functions.
arXiv Detail & Related papers (2023-09-17T00:48:19Z) - 3D Surface Reconstruction in the Wild by Deforming Shape Priors from
Synthetic Data [24.97027425606138]
Reconstructing the underlying 3D surface of an object from a single image is a challenging problem.
We present a new method for joint category-specific 3D reconstruction and object pose estimation from a single image.
Our approach achieves state-of-the-art reconstruction performance across several real-world datasets.
arXiv Detail & Related papers (2023-02-24T20:37:27Z) - Uncertainty Guided Policy for Active Robotic 3D Reconstruction using
Neural Radiance Fields [82.21033337949757]
This paper introduces a ray-based volumetric uncertainty estimator, which computes the entropy of the weight distribution of the color samples along each ray of the object's implicit neural representation.
We show that it is possible to infer the uncertainty of the underlying 3D geometry given a novel view with the proposed estimator.
We present a next-best-view selection policy guided by the ray-based volumetric uncertainty in neural radiance fields-based representations.
arXiv Detail & Related papers (2022-09-17T21:28:57Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty
Propagation [4.202461384355329]
We propose MonoRUn, a novel 3D object detection framework that learns dense correspondences and geometry in a self-supervised manner.
Our proposed approach outperforms current state-of-the-art methods on KITTI benchmark.
arXiv Detail & Related papers (2021-03-23T15:03:08Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z) - From Points to Multi-Object 3D Reconstruction [71.17445805257196]
We propose a method to detect and reconstruct multiple 3D objects from a single RGB image.
A keypoint detector localizes objects as center points and directly predicts all object properties, including 9-DoF bounding boxes and 3D shapes.
The presented approach performs lightweight reconstruction in a single-stage, it is real-time capable, fully differentiable and end-to-end trainable.
arXiv Detail & Related papers (2020-12-21T18:52:21Z) - Monocular Differentiable Rendering for Self-Supervised 3D Object
Detection [21.825158925459732]
3D object detection from monocular images is an ill-posed problem due to the projective entanglement of depth and scale.
We present a novel self-supervised method for textured 3D shape reconstruction and pose estimation of rigid objects.
Our method predicts the 3D location and meshes of each object in an image using differentiable rendering and a self-supervised objective.
arXiv Detail & Related papers (2020-09-30T09:21:43Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Shape Prior Deformation for Categorical 6D Object Pose and Size
Estimation [62.618227434286]
We present a novel learning approach to recover the 6D poses and sizes of unseen object instances from an RGB-D image.
We propose a deep network to reconstruct the 3D object model by explicitly modeling the deformation from a pre-learned categorical shape prior.
arXiv Detail & Related papers (2020-07-16T16:45:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.