論文の概要: QuOTeS: Query-Oriented Technical Summarization
- arxiv url: http://arxiv.org/abs/2306.11832v1
- Date: Tue, 20 Jun 2023 18:43:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 16:04:51.897708
- Title: QuOTeS: Query-Oriented Technical Summarization
- Title(参考訳): QuOTeS: クエリ指向の技術要約
- Authors: Juan Ramirez-Orta and Eduardo Xamena and Ana Maguitman and Axel J.
Soto and Flavia P. Zanoto and Evangelos Milios
- Abstract要約: 提案するQuOTeSは,潜在的参照の集合から研究の要約に関連する文章を検索するインタラクティブシステムである。
QuOTeS は Query-Focused Extractive Summarization と High-Recall Information Retrieval の技法を統合し、科学文書のインタラクティブなクエリ-Focused Summarization を提供する。
結果から,QuOTeSは肯定的なユーザエクスペリエンスを提供し,関連する,簡潔かつ完全なクエリ中心の要約を一貫して提供することが明らかになった。
- 参考スコア(独自算出の注目度): 0.2936007114555107
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Abstract. When writing an academic paper, researchers often spend
considerable time reviewing and summarizing papers to extract relevant
citations and data to compose the Introduction and Related Work sections. To
address this problem, we propose QuOTeS, an interactive system designed to
retrieve sentences related to a summary of the research from a collection of
potential references and hence assist in the composition of new papers. QuOTeS
integrates techniques from Query-Focused Extractive Summarization and
High-Recall Information Retrieval to provide Interactive Query-Focused
Summarization of scientific documents. To measure the performance of our
system, we carried out a comprehensive user study where participants uploaded
papers related to their research and evaluated the system in terms of its
usability and the quality of the summaries it produces. The results show that
QuOTeS provides a positive user experience and consistently provides
query-focused summaries that are relevant, concise, and complete. We share the
code of our system and the novel Query-Focused Summarization dataset collected
during our experiments at https://github.com/jarobyte91/quotes.
- Abstract(参考訳): 抽象。
学術論文を書く際、研究者は論文のレビューと要約にかなりの時間を費やして関連する引用とデータを抽出し、紹介と関連する作業セクションを構成する。
この問題に対処するため,我々は,潜在的参照の集合から研究の要約に関連する文章を検索し,新たな論文の合成を支援する対話型システムQuOTeSを提案する。
QuOTeS は Query-Focused Extractive Summarization と High-Recall Information Retrieval の技法を統合し、科学文書のインタラクティブなクエリ-Focused Summarization を提供する。
そこで本研究では,本システムの性能を計測するために,研究に関連する論文をアップロードし,そのユーザビリティと生成する要約の質について評価した。
結果から,QuOTeSは肯定的なユーザエクスペリエンスを提供し,関連する,簡潔かつ完全なクエリ中心の要約を一貫して提供することが明らかになった。
我々は、我々のシステムのコードと、https://github.com/jarobyte91/quotesで収集された新しいQuery-Focused Summarizationデータセットを共有する。
関連論文リスト
- Beyond Relevant Documents: A Knowledge-Intensive Approach for Query-Focused Summarization using Large Language Models [27.90653125902507]
本稿では,知識集約型タスク設定として,クエリ中心の要約を再構成する知識集約型アプローチを提案する。
検索モジュールは、大規模知識コーパスから潜在的に関連のある文書を効率的に検索する。
要約コントローラは、強力な大言語モデル(LLM)ベースの要約器を注意深く調整されたプロンプトとシームレスに統合する。
論文 参考訳(メタデータ) (2024-08-19T18:54:20Z) - Investigating Consistency in Query-Based Meeting Summarization: A
Comparative Study of Different Embedding Methods [0.0]
テキスト要約は自然言語処理(NLP)分野における有名な応用の1つである。
与えられたコンテキストに基づいて重要な情報による要約を自動的に生成することを目的としている。
本稿では,Microsoft が提案した "QMSum: A New Benchmark for Query-based Multi-domain Meeting Summarization" に着想を得た。
また,提案するLocaterモデルを用いて,与えられたテキストとクエリに基づいて関連するスパンを抽出し,それをSummarizerモデルで要約する。
論文 参考訳(メタデータ) (2024-02-10T08:25:30Z) - Improving Query-Focused Meeting Summarization with Query-Relevant
Knowledge [71.14873115781366]
本稿では,その課題に対処するため,知識認識要約器(KAS)と呼ばれる知識強化2段階のフレームワークを提案する。
最初の段階では、クエリ関連セグメント抽出を改善するために知識認識スコアを導入します。
第2段階では,クエリ関連知識を要約生成に取り入れる。
論文 参考訳(メタデータ) (2023-09-05T10:26:02Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
我々は,クエリとユーザが関連すると考えるドキュメントとの類似性に基づいて,文書を再参照するkNNアプローチを提案する。
異なる統合戦略を評価するため、既存の4つの情報検索データセットを関連フィードバックシナリオに変換する。
論文 参考訳(メタデータ) (2022-10-19T16:19:37Z) - Survey of Query-based Text Summarization [31.907523097592513]
クエリベースのテキスト要約は、クエリ情報のガイダンスの下で、プロキシテキストデータを要約に格納する必要がある重要な実世界の問題である。
本調査は,クエリベースのテキスト要約法と関連する汎用テキスト要約法における興味深い作業を要約することを目的としている。
論文 参考訳(メタデータ) (2022-09-17T05:34:32Z) - An Empirical Survey on Long Document Summarization: Datasets, Models and
Metrics [33.655334920298856]
本稿では,長期文書要約研究の概要について概説する。
我々は、現在の研究の進展に対する視点を広げるために、実証分析を行う。
論文 参考訳(メタデータ) (2022-07-03T02:57:22Z) - Aspect-Oriented Summarization through Query-Focused Extraction [23.62412515574206]
実際のユーザのニーズは、特定のクエリではなく、ユーザが興味を持っているデータセットの幅広いトピックという側面に、より深く浸透することが多い。
抽出クエリに焦点を絞った学習手法をベンチマークし、モデルを訓練するための対照的な拡張手法を提案する。
我々は2つのアスペクト指向データセットを評価し、この手法が一般的な要約システムよりも焦点を絞った要約を得られることを発見した。
論文 参考訳(メタデータ) (2021-10-15T18:06:21Z) - iFacetSum: Coreference-based Interactive Faceted Summarization for
Multi-Document Exploration [63.272359227081836]
iFacetSumは、インタラクティブな要約と顔検索を統合している。
微粒なファセットは、クロスドキュメントのコア参照パイプラインに基づいて自動的に生成される。
論文 参考訳(メタデータ) (2021-09-23T20:01:11Z) - CitationIE: Leveraging the Citation Graph for Scientific Information
Extraction [89.33938657493765]
引用論文と引用論文の参照リンクの引用グラフを使用する。
最先端技術に対するエンド・ツー・エンドの情報抽出の大幅な改善を観察する。
論文 参考訳(メタデータ) (2021-06-03T03:00:12Z) - Text Summarization with Latent Queries [60.468323530248945]
本稿では,LaQSumについて紹介する。LaQSumは,既存の問合せ形式と抽象的な要約のための文書から遅延クエリを学習する,最初の統一テキスト要約システムである。
本システムでは, 潜伏クエリモデルと条件付き言語モデルとを協調的に最適化し, ユーザがテスト時に任意のタイプのクエリをプラグイン・アンド・プレイできるようにする。
本システムでは,クエリタイプ,文書設定,ターゲットドメインの異なる要約ベンチマークにおいて,強力な比較システムの性能を強く向上させる。
論文 参考訳(メタデータ) (2021-05-31T21:14:58Z) - From Standard Summarization to New Tasks and Beyond: Summarization with
Manifold Information [77.89755281215079]
テキスト要約は、原文書の短く凝縮した版を作成することを目的とした研究分野である。
現実世界のアプリケーションでは、ほとんどのデータは平易なテキスト形式ではない。
本稿では,現実のアプリケーションにおけるこれらの新しい要約タスクとアプローチについて調査する。
論文 参考訳(メタデータ) (2020-05-10T14:59:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。